

ANALYTICAL MODEL OF PROBE CARD PERFORMANCE AT ELEVATED TEMPERATURE

JANUARY KISTER KRZYSZTOF DABROWIECKI

> PROBE TECHNOLOGY CORPORATION

Introduction

- Room temperature probe card models have been successfully utilized at PTC since '95 (ref. SWTW'95).
 - · contact force.
 - scrub length,
 - mechanical stresses
 - contact resistance and life time prediction
- Elevated temperature probing presented several challenges;
 - no at-temperature outgoing probe card analyzer available
 - heat transfer parameters can vary with each customer's test set-up
 - mechanical loads from Pogo's and mounting configuration are more critical since temperature increase causes materials to get "weaker"
- Parametric Finite Elements have been utilized to create the analytical model to predict behavior of different probe card geometry
 - existing expertise
 - proven result accuracy at room temperature

Topics of Discussion

- Model accuracy verification at Room Temperature
 - Prediction Vs. measurement of probe cards
 - Contact Force
 - Total Scrub length
- Elevated temperature model
 - Considered probe card geometry
 - Boundary conditions (heat transfer effects, mounting)
- Probe card elevated temperature performance analysis.
 - Temperature distribution
 - Thermal deformation
 - Thermal stresses

Mechanical Stresses and Deformation in Probe & Epoxy- Room Temperature

- Stresses superimposed on deformed probe and epoxy (PSI)
- Maximum stresses in Tungsten probe are safe at 0.003" deflection
- Maximum stresses in epoxy can exceed it's strength at 0.003" deflection

Contact Force Predicted by FEA Model for 14 Probe Configurations Used in Probe Card Manufacturing - Room Temperature.

Room Temperature Results

- Very good correlation between FE-model and measurement
 - Mechanical stresses in probe and epoxy due to 0.003" deflection
 - Measured Contact Force Vs. FEA model results for 14 different probe geometries used in probe card manufacturing.
 - Input/ Output Table for parametric FEA model
- Parametric model allows for efficient examination of many geometries- Fast Feedback to manufacturing.
- Fewer mistakes due to wrong beam length for desired contact force/ scrub length.

Elevated Temperature Model

- Presented is modeled DRAM 6x4 Multi- Die Probe Card:
 - Advantest 5335 tester PCB platform; 10" Dia., .189" thickness
 - 4.0" x 1.0" probing area
 - Probe Depth 0.330"
 - 125 deg. C operating temperature (chuck)
- Individual Probe performance:
 - Thermal deformation
 - Mechanical stresses
- PCB/stiffener mechanical performance:
 - Temperature distribution
 - Thermal deformation
 - Thermal stresses

Thermal Deformation.

Probe and Epoxy Expansion

- -Heat source from chuck
- -Epoxy expansion bends probe upwards and out.
- Resultant probe tip movement ~0.0003"/ 100 C

Thermal Stresses Due to Probe and Epoxy Expansion.

- -Heat source from chuck
- -Epoxy expansion bends probe upwards and out

- Highest Thermal stress is in tungsten probe & within yield strength.
- Epoxy stress is within yield strength.

Probe Card Finite Element Model

Top View

- Model with optional stiffener
- External heat generation (Chuck)
- Pogo Pins clamp PCB perimeter

- Convection through air (in & out)
- Radiation to PCB bottom
- No Conduction through probes

Temperature Distribution - Tester/Stiffener Side

View of 1/4 Geometry

Temperature Distribution

1/4 of Probe Card Geometry

- Chuck temp. = 125 C
- Chuck-PCB dist. = .330"

Temperature Increase in Probe Card as Measured on Top of PCB

Probe Card Thermal Deflection

1/4 of Probe Card Geometry

Transient Probe Card Deflection as Measured on Top of Stiffener (A) and Top of PCB (B)

Probe Card Thermal Stresses

1/4 of Probe Card Geometry

CONCLUSIONS:

- Presented Parametric FEA model offers insights into how probe cards perform mechanically at Room as well as Elevated temperatures in Steady State mode.
- Model accurately predicted:
 - Deflections
 - Temperature distribution
 - Stress/strain
 - Contact forces/ scrub length
- Parametric nature of the model allowed for fast analysis and selection of optimum stiffener/ support ring design with desired 0.0008" max, thermal deflection at 125 C.
- Future improvements of the model will include Transient Heat Transfer Analysis to enable predicting heat soak times for probe cards.