

Elevated Temperature Probing Development Subcommittee

Gobinda Das	- IBM
Phil Seitzer	- Lucent Technologies
Ken Papworth	- Motorola
Rex Lewis	- Texas Instruments

SEMATECH Mission Statement

• SEMATECH members will create shared competitive advantage by working together to achieve and strengthen manufacturing technology leadership.

Test Thrust

The SEMATECH Probes PTAB Members and their Member Companies

• AMD	Pete Dodd	
• Digital	Al Miller	Suresh Nadig
• HP	Susan Stirrat	Henry Chen
• IBM	Gobinda Das	Norm Rapoport
• Intel	Barry Lieberman	Ken Karklin
• Lucent	Phil Seitzer	
 Motorola 	Ken Papworth	Bill Williams
 National 	John Hsia	
• Rockwell	Mike Nakamura	
• TI	Rex Lewis	Mike Wong
• TI/SEMATECH	Rey Rincon	(Project Manager)
		SEMATECH

SEMATECH Elevated Temperature Development

Background -

Why do we need elevated temperature probing?What are the associated problems?

• What is SEMATECH's development roadmap for elevated temperature probing?

為 1997 Benchmarking

A High Temperature Experiments

• What will be the outcome of these development efforts?

Why Probe at Elevated Temperature?

SOME REASONS:

- Improved package yield.
- Required for "trim" operations.
- Customer specified test requirements.
- Test yield affected on temperature sensitive devices.
- Requirement to demonstrate that the device functions over a temperature range.
- KGD requirements
 - 🗟 No package test
 - A Low cost test option

What are the Problems with Elevated Temperature Probing?

Everything moves around

⇔Different parts of the probe card have different TCEs*.

- Additional expansion plus mechanical constraint produce forces that cause twists, warps and bends.
- Some critical materials (such as epoxy) develop undesirable characteristics:

(soften, become electrically conductive)

A The wafer expands, but not as much as the probe card. Most new probers can compensate for wafer expansion.

* TCE = Temperature Coefficient of Expansion

Probe Card Material TCEs

MATERIAL

TEMP. COEFF. of EXP.

Silicon Wafer	2.50	Χ	10 ⁻⁶ /deg. C
Beryllium Copper (Cu)	7.78	Χ	10 ⁻⁶ /deg. C
Tungsten/Rhenium	4.92	Χ	10 ⁻⁶ /deg. C
Tungsten *	4.43	Χ	10 ⁻⁶ /deg. C
Aluminum *	24.00	Χ	10 ⁻⁶ /deg. C
Ceramic *	9.30	Χ	10 ⁻⁶ /deg. C
PCB (FR4) *	13 - 18	Χ	10 ⁻⁶ /deg. C
PCB (Polyimide) *	12 - 16	Χ	10 ⁻⁶ /deg. C
Epoxy (Typical-25C) *	65.00	Χ	10 ⁻⁶ /deg. C
Epoxy (PTC125) *	25.00	Χ	10 ⁻⁶ /deg. C

* = Probe Technology Corporation supplied data

More Elevated Temperature Problems.....

<u>Characteristics of the probe/pad interface change</u>
 Contact resistance is believed to increase for some metal systems.

Tungsten Vs. Tungsten/Rhenium on Aluminum

Scrub length has been observed to vary: Change in Aluminum texture, oxide characteristics OR - is it purely mechanical?

Enhancement of Contamination.

Environmental contaminants cause more problems when heated.

These problems definitely increase with finer pad pitches and higher probing temperatures.

SEMATECH's Development Roadmap Probes & KGD PTAB's

(Peripheral Probe - Aluminum Pads Only)

	1997	1998	1999
	70 μm pitch	50 μm pitch	50 µm pitch
Probes	25°C/85°C	25°C/85°C	25°C/85°C/125°C
	500 in-line pads	500 staggered pads	500 in-line pads
KGD Wafer Level Test	125/100 µm pitch	70 μm pitch	
	125°C	125°C	
	150 in-line pads	500 in-line pads	

06/03/97

Test Thrust SEMATECH's 1997 Benchmarking Peripheral (70 µm pitch) @ 85 C Mechanical DC AC **Probe Card Analyzer AC Characterization Tester** (Lifetest) Scrub Mark Analysis **Parametric Analyzer Prober for Lifetest SEMATECH** 06/03/97 11

CHARTER of the Elevated Temperature Development Subcommittee

- Define experiments to insure that our 1998 probe requirements will be met.
 - Experiments that will reveal the "best known practices" for manufacturing a 70 μm pitch, 125° C probe card by EOY 1997.
 - Determine which probe needle metal system at 125° C (Tungsten or Tungsten/Rhenium) performs better over time on Aluminum pads.

High Temp. Experiments

Hot chuck alignment

Tested for Continuity, Planarity and Alignment

High temperature epoxy (125 C)

Best known manufacturing methods for a 125 C probe card 50% of the probes will be Tungsten and the other half will be Tungsten/Rhenium (separated to avoid mechanical coupling) Room temperature probe card analyzer data

Recommended cleaning procedure and frequency
 Wiring information to differentiate needle materials

High Temp. Experiments Test Plan

• Initial Mechanical Metrology

🚵 Probe card analyzer

Planarity and Alignment

Tip Diameter

• DC Metrology (125 C)

A CRES over 500k touchdowns, sampling every Nth touchdown Separate CRES between Tungsten & Tungsten/Rhenium probes Plot of Max., Min., Avg. CRES Vs. # of touchdowns

• Mechanical Metrology (Initial, 25k, 125k, 250k and 500k touchdowns)

- A Probe card analyzer (change over time)
 - **Planarity and Alignment**
 - Tip Diameter
 - Scrub mark damage measured

Schedule

•	Benchmarking	Start May August	End June Sept.
•	High Temp. Experiments		
	Vendors selection	June	July
	Test program complete	May	July
	Probe card build	July	August
	Test Wafers	June	July
	Lifetesting	August	Oct.
	Report	Nov.	Dec.
	Test Wafers Lifetesting	June August	July Oct.

Expected Outcomes

• We anticipate that:

A One needle metal system (either Tungsten or Tungsten/Rhenium) will perform better at elevated temperature over time.

A One or more of the selected probe card vendors will produce a probe card with acceptable life and performance.

- Leverage the lessons learned from the Benchmarking and High Temperature experiments
- Provide feedback to the probe card industry such that our future requirements of finer pad pitches at higher probing temperatures will be met.