Modeling the Array Force of C4 Probe Cards during Wafer Sort

Rahima Mohammed
Arun Ramamoorthy
Intel Corporation
Overview

- Problem Definition
- System Model
 - PCB Deflection Model
 - Pro/E and Pro/Mechanica model
 - Chuck Deflection
- Model Validation
 - Pressure Paper and Load Cell
- Conclusions
Probe Card and the System

Tester

C4 Probe Card

VLSI chip

Prober

Chuck

Wafer

Southwest Test Workshop 1999
Rahima Mohammed
Contact Resistance and Model?

- Contact Resistance (Cres) is the resistance between the C4 bumps and the probes.
- High power requirements of the products require reducing Cres to achieve good electrical contact.
- Without good Cres - False Failures and Yield Reduction.
- Control variable over Cres is overtravel (OT).
- Overtravel (OT) required to achieve good Cres during wafer sort varied with the product probe count.
Why do we need a Model?

- Increase in probe count increases the array force exerted by the probes on the chuck.
- Normal contact force is due to the compression of the probes, it is critical to model the actual compression of the probes for an OT programmed (input) into the prober.
- Determine the array force on the chuck from the actual compression of the probes.
Schematic of the System

High power CPU sort requirements result in probe count increase and hence, increase in the array force.
System Modeling

- PCB, Probes and Chuck treated as a system of springs in series (in equilibrium)

\[
\frac{1}{k_{\text{system}}} = \frac{1}{k_{\text{chuck}}} + \frac{1}{k_{\text{springs}}} + \frac{1}{k_{\text{PCB}}}
\]

\[
\frac{F}{k_{\text{system}}} = \frac{F}{k_{\text{chuck}}} + \frac{F}{k_{\text{springs}}} + \frac{F}{k_{\text{PCB}}}
\]

- Programmed OT = Chuck Deflection + Probe Compression + PCB Deflection
Objective

Develop a model to predict the array force on the chuck for an overtravel programmed into the prober

Variables
- Overtravel (OT)
- Probe Count
- Die Location

Measured Quantity
- PCB Deflection

Limitations
- Prober to prober variation (ITTO prober only)
- PCB to PCB variation
- Variation in k-value
PCB Deflection Expt. Setup

S9K Testhead Emulator

Dial Gage

06/07/1999

Southwest Test Workshop 1999
Rahima Mohammed
Metrology Capability Study

- MCA done on dial gage used to measure PCB deflection (n=16 for accuracy evaluation, n=30 for repeatability study on known thickness samples)
 - Precision/Tolerance (P/T) of 0.21

- The chuck z-movement was verified to check for any bias in the z-movement.
 - Chuck z-movement linear with OT with a bias.
MCA Study (cont.)

- To obtain a baselines for the Std. Dev., 30 measurements of the PCB Deflection were taken on an Al wafer at 5 die locations each and 4 OTs at each location.
 - PCB Deflection linear with OT with a slope that varied based on the measured die location (due to variations in chuck deflection at different die locations).
Experimental Design

- **Probe Count**
 - Started with C4 probe card and plucked sets of 200 probes.

- **Positional Dependence** (30 random die locations spread across the wafer).

- **Overtravel** (2 OT and 9 measurements per OT).
Analysis

- PCB deflection model by fitting the data using stepwise statistical regression analysis.

- Higher order effects (>2) were included in the model to start with and were dropped subsequently based on their significance level.

- The model was validated by collecting data with by removing another 100 probes from the C4 probe card.
Model Validation

![Graph showing the comparison of data and model predictions for deflection (um) as a function of Die X (for a fixed Die Y=0). The graph indicates that the model predictions closely follow the data, demonstrating the model's validation.]
Pro/E and Pro/Mechanica Model of the PCB

Constraints
Test Head Emulator Loads

Pro/E model

Pro/Mechanica Analysis of PCB Displacement Distribution

Southwest Test Workshop 1999
Rahima Mohammed
Empirical Model vs. FEM Model

S9k Force vs. Max. PCB Deflection

Matched to within 5%

PCB Deflection varied linearly with OT.
Chuck Deflection Modeling

- Prober parameters used to build a model for the chuck deflection
 - Chuck Deflection = f([X,Y], F,T); F = Force and T = Temperature
Model Validation by C4 array Force Measurements

- S9K and J973 testheads do not have access to make PCB deflection measurements (can only be done at ITTO Lab).

- Alternative techniques have been developed to make array force measurements on the sort floor.
 - Pressure paper and load cell techniques
Load Cell Technique

Load Cell (to measure Resultant Force Loads)

Fixture (Stainless Steel) surrounding the load cell to avoid any off-axis loading

Tungsten Carbide plate on the surface of the load cell and the fixture around the load cell to allow evenly distributed compressive load on the loading surface and establish electrical contact.
Pressure Paper Technique

Two - Sheet Prescale Film

Initial Scan of the Die

Pseudo-Color Representation by Topaq Analyzer

343.03
(Pressure)

71.12

06/07/1999

Southwest Test Workshop 1999
Rahima Mohammed
Pressure paper technique matches the model closely and is more useful in the production environment.

Load cell technique shows the right trend but with an offset and is useful in the Lab environment (Fast).
S9K vs J973 PCB Deflection

- Allowed to match actual probe compression between S9K and J973 to determine normal force per probe.
- Obtain comparable Cres

C4 Technology (Load Cell)
J973 system stiffer than S9k
Conclusions

- A novel model developed to predict the actual compression of the probes in a C4 probe card as function of POT, die location on the wafer, and the probe count.
- Pro/E and Pro/Mechanica analyses matched the PCB deflection to within 5%.
- Pressure paper and Load Cell techniques matched the model and are good techniques to measure array force when there is no access to make PCB deflection measurements.
- Determine maximum probe count and chuck force.
- Aid in optimization of sort OT’s.