Tutorial:

Probe Card Evaluation Process

David Unzicker
Intel Corporation
Flash Products Division
Folsom, CA
Acknowledgements

- I wish to acknowledge the contributions of Intel’s Next Generation Flash Probe Working Group to this tutorial:
 - Mike Dang, Santa Clara
 - Khe Tang, Albuquerque
 - Susanne Lubash, Aloha
 - Kurt Guthzeit, Folsom
- I also wish to thank the SEMATECH Probes PTAB for providing the basis and background for this work.
- Suppliers: Cascade Microtech, Cerprobe, Custom One Design, Form Factor, Micro Probe, Probe Technology, SV Probe
Ground Rules

- Maintain an informal environment
 - Ask your questions as they arise
- Respect your colleagues
 - Keep side conversations under control
- Get out on time!
Agenda

- Acknowledgements
- Ground Rules
- Background
- Probe Card Selection Criteria
- Probe Card Specifications
- Evaluation Process
- Conclusions
Background

• Probe card industry
 – Dominated by epoxy ring cantilever needles
 – Many small suppliers, few large ones
 – Very competitive environment
 – Limited development capabilities
 – Stake in maintaining the status quo
Background (cont’d)

• Probing requirements are pushing beyond the envelope for cost effective use of needles
 – Fine pitch pads
 – Area array pads
 – Multi-die

• Building the cards is not the problem so much as using them is.
Background (cont’d)

• New technologies are appearing with key attributes:
 – Photolithographic
 – Machined
 – Manufactured

• Some new entries to the probe card market
 – Lack detailed knowledge of probing
Our situation:
- Highly competitive commodity flash memory
- Manufacturing cost is key
- Currently probing x16
 - Going wider
 - Considering full wafer ultimately
- Need to enable next generation wafer testing with probe capability
Background (cont’d)

Needle Probe Card Costs

Price per probe vs. Number of Probe Points

- Price per probe increases with the number of probe points.
- The costs are shown for different multiples: x_1, x_2, x_4, and x_{16}.

Diagram showing the relationship between the number of probe points and the price per probe.
Background (cont’d)

![Graph showing Probe Card Cost per Site vs. Number of DUTS Probed in Parallel]

- The graph illustrates the relationship between the number of devices under test (DUTS) probed in parallel and the cost per site for probe cards.
- As the number of DUTS probed in parallel increases, the cost per site also increases linearly.

Note: The specific values are not provided in the image.
Background (cont’d)
Candidate Technologies

- Vertical buckling beam
- Membrane
- Conglomerate bump
- Photolithographically defined beams
- others
Background (cont’d)
Candidate Technologies
Background (cont’d)

• So why are we doing this?
 – Probe technology is generally not viewed as providing a competitive advantage
 – New probe technology is expensive to develop
 – Higher volume drives lower costs
 – Suppliers cannot adequately evaluate their technologies independently
 – Sharing methods and results can accelerate learning and innovation in the market.
Agenda

- Acknowledgements
- Ground Rules
- Background
- **Probe Card Selection Criteria**
- Probe Card Specifications
- Evaluation Process
- Conclusions
Several areas of consideration in making a selection:
- Technical
- Performance
- Commercial
- Supplier capabilities
- Financial
- Environmental Health and Safety (EHS)
Probe Card Selection Criteria (cont’d): Technical

- Does the technology meet your specifications?
 - Layout flexibility
 - Planarity
 - Contact resistance
 - Current carrying capacity
 - Pad damage
 - AC characteristics
 - etc.
Probe Card Selection Criteria (cont’d): Performance

- Does the technology work in your manufacturing process?
 - Yield
 - Bin fallout
 - Repeatability
 - MTBF, MTTR
 - Run rate
 - etc.
Probe Card Selection Criteria (cont’d): Commercial

- Is the supplier prepared to meet your needs for manufacturing quantities?
 - Delivery
 - Capacity
 - Financial health
 - Warranty
 - Service
 - etc.
Probe Card Selection Criteria (cont’d): Supplier Capabilities

- Does the supplier have the technical capabilities to support the technology?
 - Engineering organization
 - Analysis capabilities
 - R&D organization
 - Technology roadmap
 - Design capabilities
 - etc.
Probe Card Selection Criteria (cont’d): Financial

- What is the total cost of ownership of the technology?
 - Purchase price
 - Lifetime
 - Maintenance and repairs
 - Retrofits
 - Headcount
 - etc.
Probe Card Selection Criteria (cont’d): EHS

- Does the technology include any EHS concerns?
 - Final product
 - Production integration
 - Manufacturing process
 - etc.
Agenda

- Acknowledgements
- Ground Rules
- Background
- Probe Card Selection Criteria
- Probe Card Specifications
- Evaluation Process
- Conclusions
Probe Card Specifications

- Define the technical requirements of the probe technology
 - DC electrical: contact resistance, leakage, signal path resistance, current capacity, etc.
 - AC electrical: bandwidth, capacitance, cross talk, etc.
 - Mechanical: alignment, planarity, force, pitch, layout, etc.
 - Other: pad damage, environment, lifetime, etc.
Probe Card Specifications (cont’d)

- **Must be defined up front before discovery**
 - Complete and specific
- **Based on process/product requirements**
 - avoid wish lists
 - clarify between “must have” and “nice to have”
- **Avoid technology specific requirements**
 - e.g scrub mark, beam length, contact force
 - Break out of the needle mindset
Agenda

- Acknowledgements
- Ground Rules
- Background
- Probe Card Selection Criteria
- Probe Card Specifications
- Evaluation Process
- Conclusions
Evaluation Process

- How do we determine compliance with specifications and fit into the manufacturing process?
 - Technical
 - Performance
- How do we do this repeatedly?
- How do we do it cost effectively?
Evaluation Process (cont’d)

- What are the available resources?
 - People
 - Probers
 - Testers
 - Off-line tools
 - Wafers
 - etc.

- Where is the likely bottleneck?
Evaluation Process (cont’d)

- Manage the bottleneck
 - Minimize demand
 - Maximize efficiency
- Warning--the bottleneck may change!
Evaluation Process (cont’d): Our Resources

- **People**
 - probe engineers shared with production

- **Equipment**
 - probers (shared)
 - IC testers (shared)
 - probe card analyzers (shared)
 - probe mark analyzer (shared)
 - microscopes (shared)

- **Wafers:** bare Al, probe test chip, and product
• Test chip provides for multiple touchdowns on a single die site. 30+ wafers worth of TDs per wafer.

• Allows for single probe card for both test chip and product.
Evaluation Process (cont’d)
Our Bottlenecks

• Initial pass showed IC testers as bottleneck
• Evaluation protocol developed to minimize requirements for testers
• Learn all we can before putting card on the tester
 – Alignment, planarity, tip geometry, prober compatibility, probe mark characteristics, operating conditions
• Understand the starting state \((t_0) \) of the card
Evaluation Process (cont’d)
Protocol Phase 1

PB3000 time zero → PCR uScope tip size, t0 → TEL P8i Vision → TEL P8i, AL Rc vs. OT → TEL P8i/PMA
Evaluation Process (cont’d)
Performance Characterization

• How does the technology perform
 – right out of the box
 – throughout its useful lifetime

• Metrics
 – Yield, bin fallout
 – Contact resistance
 – Pad damage (bondability)
 – Planarity, alignment, leakage, etc.
Evaluation Process (cont’d)
Protocol Phase 2

- Two-way correlations
- Multiple temperatures
- Acknowledge that cleaning frequency and requirements are unknown

-- generate assy wafer
-- possible clean cycle
Evaluation Process (cont’d)

Lifetime performance

• How does the technology perform and evolve with continued use?
 – Simulated useful lifetime with bare Al wafers
 – Electrical and mechanical characteristics
 – Test chip for contact resistance, PMA
• Is useful lifetime limited by the technology, the process, or the product life cycle?
Evaluation Process (cont’d)
Protocol Phase 3

PB3000 55k TD → PCR uScope tip size, 55k → TEL P8i, Al 45k TD → TEL P8i, 2PCJ16 5k TD, Hot Rc → PCR uScope tip size, 205k

PB3000 105k TD → TEL P8i, Al 95k TD → TEL P8i, 2PCJ16 5k TD, Hot Rc → PB3000 205k TD

Correlation

-- generate assy wafer
-- possible clean cycle

TEL P8i, 2PCJ16 5k TD, Hot Rc

Note: The diagram shows the correlation between different processes and equipment, indicating potential clean cycle and assembly wafer generation.
Evaluation Process (cont’d)

- How much margin to the useful lifetime does this technology provide?
 - Assumes probe life exceeds useful lifetime
Evaluation Process (cont’d)
Protocol Phase 4

- TEL P8i, Al 295k TD
- TEL P8i, 2PCJ16 5k TD, Hot Rc
- PB3000 505k TD
- PCR uScope tip size, 505k

--- possible clean cycle

--- generate assy wafer
Evaluation Process (cont’d)

Technical Protocol

- Phase 1: t_0 characterization
- Phase 2: Early life characterization
- Phase 3: Lifetime characterization
- Phase 4: Lifetime margin

Does this technology meet our technical requirements?
Completing the evaluation protocol:
- addresses technical concerns
- touches on performance concerns
Sufficient to weed out would-be contenders
Probably not sufficient to identify a single “winner”
Production pilot completes the performance evaluation
Evaluation Process (cont’d)
Production Pilot

- Multiple cards
- In parallel with current technology
- Extended time
- On-going detailed analysis of results
Agenda

- Acknowledgements
- Ground Rules
- Background
- Probe Card Selection Criteria
- Probe Card Specifications
- Evaluation Process
- Conclusions
Conclusions

- New technology concepts to address the evolving probing requirements (pitch, arrays, multi-die) are out there.
- Converting concepts into hardware is a challenge for developers
- Validating the concepts is a challenge for potential users
 - Close cooperation with suppliers in needed
Conclusions (cont’d)

- Understanding your contacting requirements is a pre-requisite to technology evaluations
 - Clear, complete specifications
- Establishing a repeatable, cost effective process for evaluating contact technologies is critical for a successful selection
- Sharing of methods and results is key to quickly getting up the learning curve and down the cost curve.