Implementation of AOI in a High-Volume Manufacturing Environment

Presented By
Robert Backie
August Technology Corporation
Southwest Region Sales Manager
June 11, 2000
Overview

- Previous process at this Fab
- What was implemented
- Improvements in process resulting from NSX implementation
- Tremendous benefits resulting from NSX implementation
- Payback $$$
- The improvements possible in your Fab
Customer Fab

• 100mm Fab shipping sawn wafers offshore for assembly
• Utilized manual inspection with paper trails for T&A inspection and tracking of defects
• Wafer maps were not used in the process – prober map did not go to assembly, etc…
• Defect categories, location and die count data recorded on paper by operator
• Inking wafers for pick and place
What was wrong?

- Defects not being found during inspection
- Die count variances between customer and foundry assembly site
- Inaccurate recording of defect location and type
 – only as accurate as the operator made it
- No quick feedback to engineering
- Inking
- Major production ramp
 – could not train or hire enough operators to meet ramp
Customer’s Previous Process

- Incoming Wafer
- Probing
- Manually Inspecting
- Sawing
- Manually Inspecting
- Inking

Customer’s Assembly House

June 11, 2000
Solving the problems

- NSX-90 automatic visual inspection
- Electronic wafer maps
- Wafer map server (*provided by customer*)
- Offline review
- Automatic defect classification
NSX-90 Capabilities Implemented

- Automated Optical Inspection
- Wafer Map Import/Update and Export
- Auto Retrain- *automatically modifies inspection recipe as your process changes*
- Defect Classification Coding (*currently manual*)
- Film Frame Handling
- Automated Defect Classification
 - *Currently being phased in over next quarter*
NSX-90 Specifications

- Defect Sensitivity down to 0.5 microns
 - Typically 10 micron in this application
- Repeatability greater than 95%
- Uptime greater than 97%
Enhanced Process

Server

Incoming Wafer -> AOI -> Probe -> AOI -> Saw -> AOI

Wafer Maps

Customer’s Assembly House

June 11, 2000
Results

- Elimination of inking
 - Wafers sent to offshore assembly house with electronic wafer maps
- Accurate recording of defects
 - Location
 - Classification
- Wafer maps implemented
- Elimination of manual inspection
- “Real time” review of defects
“Tangible” Benefits

• Inking process step removed
 – Saved time, resources and floor space
 – Eliminated chance of inking wrong die

• Pick and place defects eliminated
 – Locating ink dots not required
 – Wafer maps sent to “end customer”

• Count variance issues eliminated
 – Customer count discrepancies due to operator miscount
 “We shipped 10k and they received 9.5k?”
"The NSX-90 alone cut inspection cycle time by a factor of 4 when compared to manual inspection"
Yield Improvement

Added 1.5% to yield numbers

= 60,000 additional good die per week

= Payback in 8 weeks
Intangible Benefits

- Higher end-customer satisfaction due to higher quality of incoming products - *making their job easier!*
- Reduced human fatigue as operators are not looking through microscopes 8 hours a day
- Ergonomic improvements
- Operators utilized for other tasks - speeds ramp up
- Confidence in inspection –
 “*The NSX does not miss defects - operators do*”

Quote from manager at customer site
Ultimate Data Distribution – Where

Factory Yield Management

Front End Engineer

Server

Your Desk

YieldPilot
Excel
Custom Queries
SPC

Assembly

Probers

Wafer Maps

AOI

June 11, 2000
What Data Can We Provide?

- **Bump inspection**
 - Diameter, height, area, presence, shape, coplanarity,…

- **Probe mark**
 - Presence, area, boundary intrusion
 - Location on pad (4 dims), area, number of marks

- **Active Area**
 - Chips, cracks, particles, FM, …
 - Saw damage
How Much Data Can You Get?

Tons of Data from Probe or Bump Metrology
2400 die, 8 pads, 100% Inspection, 1000 wafer/day

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wafer</td>
<td>230,400</td>
<td>12.8 Mb</td>
</tr>
<tr>
<td>Lot</td>
<td>5,760,000</td>
<td>320 Mb</td>
</tr>
<tr>
<td>Day</td>
<td>230,400,000</td>
<td>12 Gb</td>
</tr>
</tbody>
</table>

Thinking 300mm?
Count on approximately 41 Mb of data per wafer for full metrology!!!
Implementation of the NSX

- Increased Fab productivity and profits
 - Improvements in your process through use of accurate and complete data
 - Elimination of process steps that are dirty or prone to create defects - i.e.- *Inking*
 - Yield improvements- *quality of work as well as process improvements*
 - Throughput, throughput, throughput

- Quality of work improvements
 - Higher quality inspection and accurate data
 - Improved job satisfaction - *Operators do not sit in front of a microscope for 8 hours = less turnover*
August Technology

- Founded 1993
- Bloomington, MN
- Cassette and FOUP inspection
- Automated visual inspection
- Bump, probe and sawn wafer inspection
- Over 85 NSX systems installed worldwide
- Wafer, film frame & Auer boat handling
August Technology’s Post-Fab

- Whole wafers
 - Active die area, bond pads, bump
- Sawn wafers
 - Chips, FM, cracks, scratches…
- Die in waffle pack or Gel-pak
- YieldPilot™ – defect data and process analysis
 - Data server
 - Browser integration
- 300mm inspection ready today!
Contact Information

• Robert Backie
 Southwest Sales Manager
 Phoenix, Arizona
 Phone: (480) 778-9694
 Email: robert.backie@augusttech.com

• August Technology
 4900 West 78th Street
 Bloomington, MN 55435
 Phone: (952) 820-0080 or (612) 820-0080
 www.augusttech.com