RF Signal Integrity Characterisation of Probe Cards

K. Helmreich, A. Lechner

Advantest Test Engineering Solutions GmbH

- 1 Motivation: At-Speed Probing
- 2 How to Quantify 'Speed' ?
- **3 Measurement Items and Methods**
- 4 Results
- 5 Summary

In the past ... probe technologies limited wafer level test speed

Now ...

new probe technologies promise at-speed capabilities

Question: How fast can we go ?

Common Misunderstandings

- intermix <u>test vector rate</u>, <u>test data rate</u> and <u>bandwidth</u>, all expressed in units of MHz
- use terms as <u>transition time</u>, <u>rise time</u>, <u>fall time</u>
 without clear threshold definition (e.g. 20% to 80%)
- don't differentiate <u>signal</u> transition time and <u>equivalent</u> or <u>intrinsic</u> transition time of <u>interconnects</u>
- don't distinguish between probe card and probe assembly,
 i.e. PC and PC interface to tester

The 'Speed' Confusion - What is a MHz ?

1. Test Vector Rate R_v

number of test cycles per second, e.g. 400 Mcps, usually referred to as 400 MHz

2. Test Data Rate R_D

number of bits transferred per second: a bit of data is transferred with

- rising edge (SDR), e.g. 400 Mbit/s
- both edges (DDR), e.g. 800 Mbit/s

3. Signal Bandwidth B_{3dB,signal}

3dB-width of the frequency band of sine components constituting the signal, for test signals from DC to e.g. 600 MHz

'Speed' Relationships: Signal and Intrinsic Transition Times

Assumptions:

- 1. Test signals show 'Gaussian' edges
 - (i.e. time integral of Gaussian pulses)
- 2. PC assembly shows Gaussian filter characteristic: $a(dB) \sim -f^2$

tolerated transition time prolongation $\approx 5\%$: t_{t 20/80,int} < 0.32 t_{t 20/80,sig, in}

approximate maximum test vector rate: $R_{V, max} \approx 1 / (5 t_{t 20/80, sig})$

Real Test Signals ... may not show exactly Gaussian edges

Real PC Assemblies ... may not show Gaussian filter characteristic

Fortunately ... above equations are fairly accurate for a variety of edge shapes and monotonous low pass filter responses

Requirements to At-Speed Probe Assemblies

- uniform propagation delay over channels
- sufficiently low intrinsic transition time on all channels
- appropriate power / ground structures
- sufficiently low crosstalk between channels

Test Fixture Characterisation System - TeFiCS®

TeFiCS[®] Probe Card Test Unit

Step Response

Pass / Fail Decision

Analysing Step Responses

Results: PC Assembly

Comparing Channel Classes

Comparing to Reference Response

Propagation Delay Histogram

Results: PC Assembly Intrinsic Transition Time Histogram

Results: Cantilever PC

Step Response

Results: Cantilever PC

Propagation Delay Histogram

Results: Cantilever PC Intrinsic Transition Time Histogram

Results: Vertical PC

Step Response

Results: Vertical PC

Propagation Delay Histogram

Results: Vertical PC Intrinsic Transition Time Histogram

Results: Buckling Beam PC

Step Response

Results: Buckling Beam PC

Propagation Delay Histogram

Results: Buckling Beam PC Intr. Transition Time Histogram

Summary

- TeFiCS[®] measures
 - propagation delays and
 - intrinsic transition times
 - on all signal channels of probe cards or probe assemblies
- Time accuracy better than 10ps
- Amplitude accuracy better than 1%
- Comparison against user-defined limits per channel class
- Measurement time 3s per channel
- Test report generation (responses, histograms, statistics)
- Crosstalk and power / ground stability are not addressed

TeFiCS[®] ...

- enables RF probe card / probe assembly characterisation and automated test of relevant properties from all channels
- helps monitor, compare and improve PC quality with respect to signal integrity and channel-to-channel variance
- allows qualifying and certifying PCs and PC assemblies prior to delivery to customer
- is the first system world-wide for this purpose

