

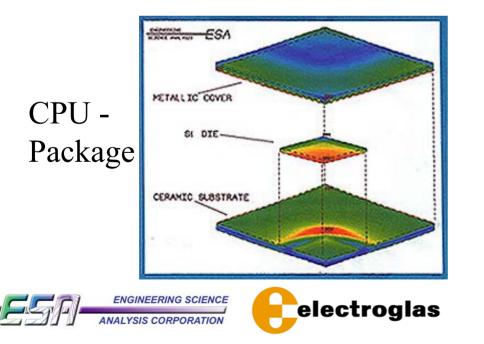
743 E. Goldenrod St. Phoenix, AZ 85048 480.460.9179

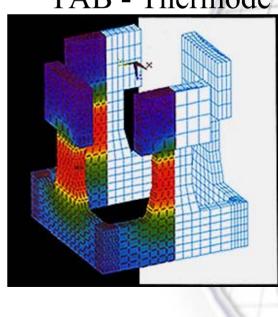
http://www.ProbeSolutions.com

Effects of Z-Stage Motion control on Probe Contact Force

Martín Martínez ESACORP - ProbeSolutions Uday Nayak Electroglas

Outline


- Introduction to Engineering Science Analysis
 ProbeSolutions
 - Who we are
 - Why we're here
- Presentation Objectives
- Q & A
- Conclusion



Introduction ESA - ProbeSolutions

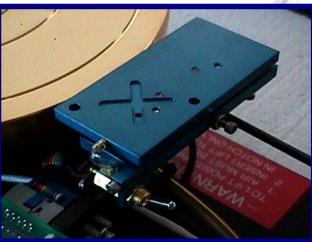
- ESA was founded in 1991 to help major Semiconductor manufacturers with their microprocessor packaging process.
 - Introduced analysis techniques that were predominantly used in the Aerospace industry.

June 2001

TAB - Thermode

Introduction ESA - ProbeSolutions

- ProbeSolutions an extension of ESA into the Semiconductor test arena.
- Formed to help a major Semiconductor manufacturer solve a problem with their probe cleaning process.
 - Co-developed a bolt-on product to enhance prober capability.
- Our Charter We are a premier one-stop shop specializing in cleaning materials and product/process enhancements for semiconductor test.

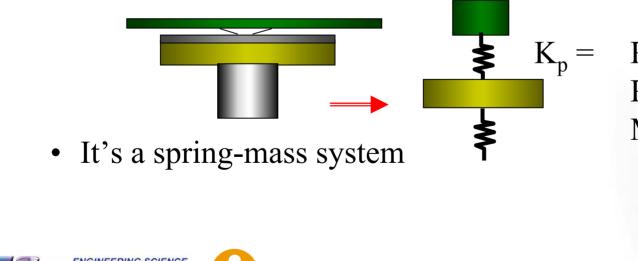


Introduction ESA - ProbeSolutions

- Our main Product(s) and Services
 - Enhancements for the probing world.
 - Probe-Tip cleaning materials
 - BlueMax Probe Tip cleaning platform

• Concepts proven using ESA's analytical techniques and

Presentation Objectives


- Create awareness of impact of Z-stage motion on probe performance
- Introduce new concepts
- Illustrate concepts using analytical techniques
- Discuss some of the benefits
 - How it can be used to increase
- Discuss some of the detriments
 - Pitfalls if not controlled

- Probecards all use the same basic principle of overdriving a 'spring' to create a force (BCF)
- Differing styles with different probe materials & probe tip configuration
- Common denominator:

electroglas

Probe tips + PCB + Mount + etc.

Background

- Electroglas (EG) & ESACORP's ProbeSolutions (PS) understand that probecards designs have remained relatively 'constant' over the last few years
- Issue:
 - Devices and pads are continuously getting smaller and tighter
 - Pushing the limitations of the mechanical geometry of probecard and probecard manufacturing processes
- Solution:
 - EG and PS investigating the mechanics of the probe and prober system to enhance performance of existing probecard designs

electroglas

Z-Stage Motion control on Probe Contact Force

OD

8.49+00

6.95+00 5 42+00

3.88+004 2.35+004 8.11+003 -7.25+003 -2.26+004 -3.80+004 -5.33+004 -6.87+004

June 2001

9

BCF

• Probes sized using 'static' loading conditions

electroglas

- Same assumptions used in:
 - QA Testing
 - Engineering studies / analyses
 - Process Evaluations



Why is understanding the motion so important?

June 2001

10

• In the real world, there is impulse loading.

• Crash-worthiness

How does this apply to Semiconductor Probe?

 In actuality, chuck moves up according to a motion curve.
 Sawtooth - Triangular

Square - Trapezoidal

1/2 Sine Pulse

- Depending on the mechanical aspects of the system, the load at the probe tip can be *magnified*.
 - Could be beneficial penetrate oxides, short scrub
 - Could be detrimental pad strike-through, probe damage

What Factors Govern Impulse?

June 2001

12

- Impulsive Response Dependent on:
 - Time (period) of overdrive pulse (τ_p)

- Mechanical Natural Frequency (f_n) of *System*
 - Probes + PCB + Stiffeners + Probecard Tray + etc.

 \rightarrow τ_p

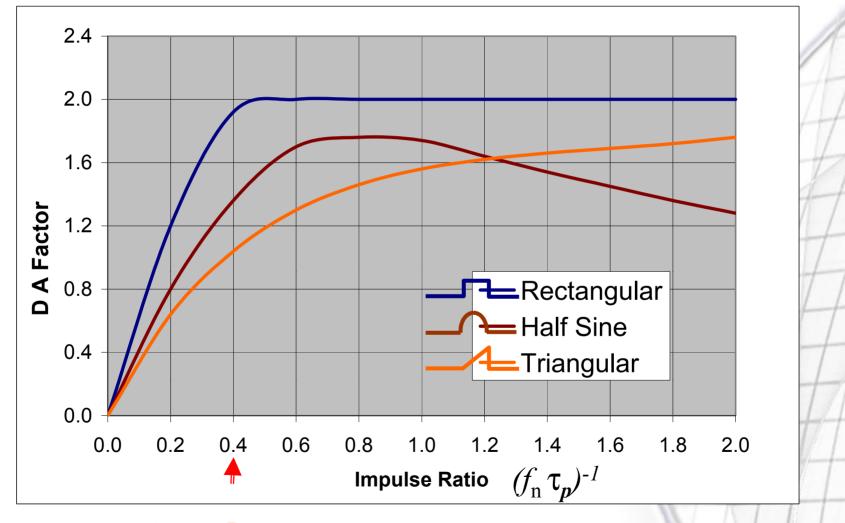
- Component stiffness
- Component Mass (weight)

Why Control Z-Stage Motion?

- Effect of Z-Stage Motion control on Probe Contact Force
 - Impulse Ratio inversely proportional to Probe system frequency (f_n) x Overdrive pulse period (τ_p)

$$(f_n \tau_p)^{-1}$$

- Dynamic Amplification Factor (DAF) = Increase in actual probing force due to impulsive loading
- Dynamic motion of Z-Stage can affect actual probe force on pad


Actual Probe Force = Predicted Static Force x DAF

Impulse Ratio may amplify expected Probe Force

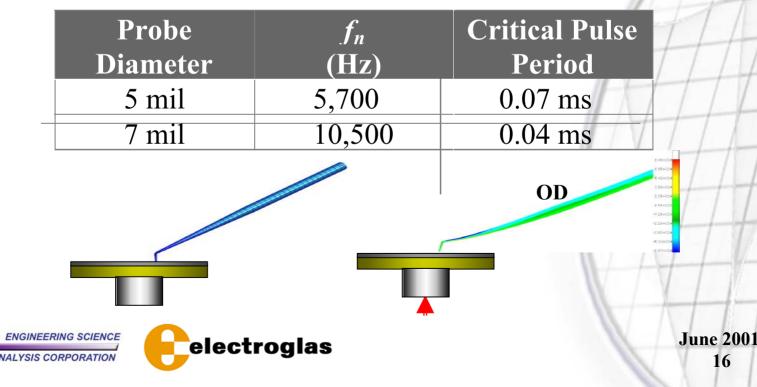
electroglas

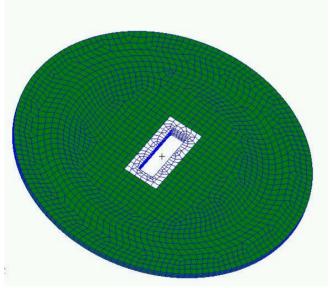
What controls Natural Frequency of components?

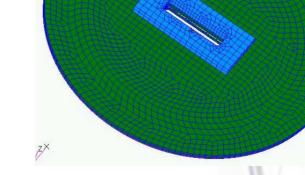
- Springrate dependent on system mechanical aspects
- Component factors affecting Natural Frequency
 - Materials
 - Tungsten probes have higher mass and stiffness than Be probes
 - PCB / Stiffening Layers / Stiffeners

electroglas

- Geometry
 - PCB Diameter / Thickness (Diaphragm effects)
 - Probe Diameter / Length / Style / Interposers
- Support mechanisms
 - Probecard Tray


EERING SCIENCE

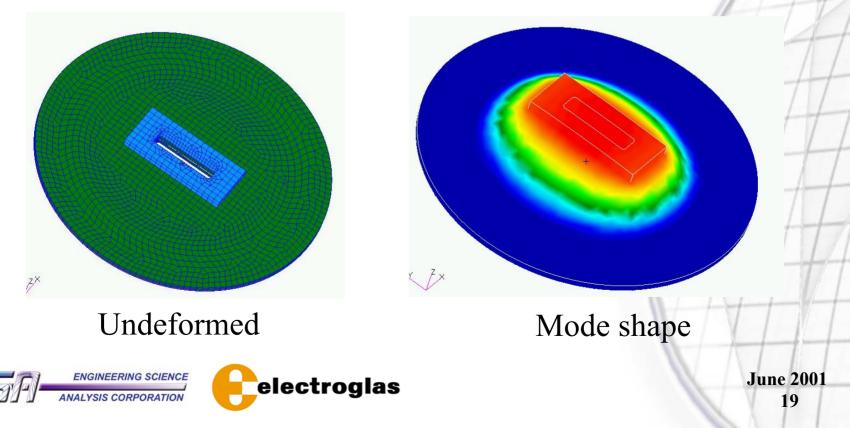

Geometric Contributions Probe


- Tungsten Probe
 - 5 mil diameter wire vs. 7 mil diameter wire 100 mil etch
 - Smaller diameter reduces stiffness and almost doubles critical overdrive pulse period.

- Probecard PCB effects on overdrive pulse
 - J996 Style
 - Critical frequencies examined -> Overdrive Pulse

Board with stiffener

Board without stiffener



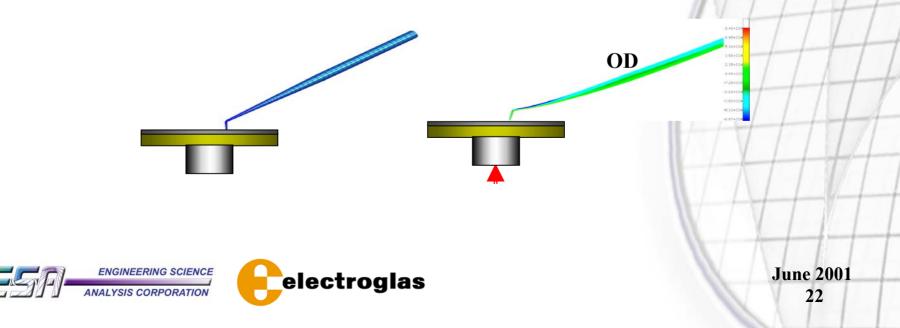
- J996 Board without stiffener Note 'Diaphragm' mode
 - Natural Frequency = 500 Hz
 - Critical overdrive pulse period = 0.8 ms

- J996 Board with stiffener 'Diaphragm' mode
 - Natural Frequency = 375 Hz
 - Critical overdrive pulse period = 1.1 ms

- J996 Board
 - Adding 'stiffener' actually adds weight to the probecard
 - Reduces natural frequency
 - Increases critical pulse period by 37%
 - Design is more susceptible to impulse loading

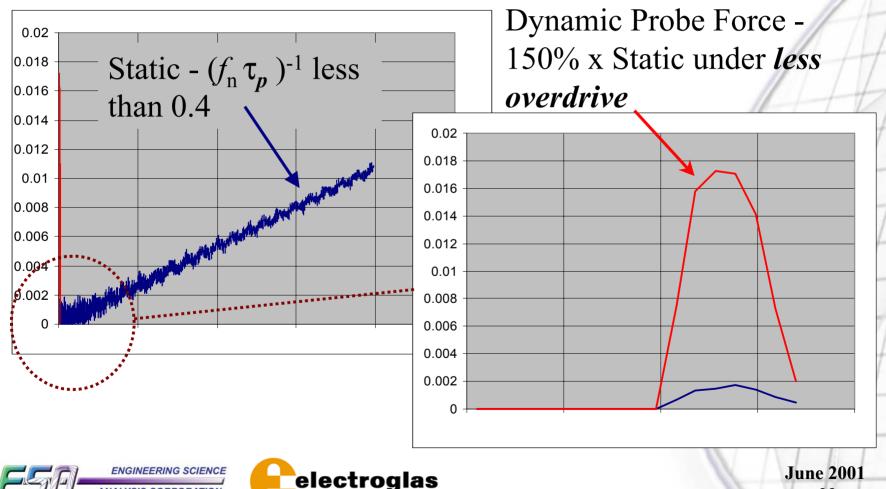
PCB Stiffener	f_n (Hz)	Critical Pulse Period
No	500	0.8 ms
Yes	375	1.1 ms

Other Contributors


- Other factors that affect critical overdrive pulse period:
 - PCB thickness
 - Elevated or reduced temperatures
 - Probecard support features
 - Clamping around edges
 - Stiffeners

Analysis Example

- Analyze Probe using DYTRAN software
- Probe subjected to input pulse that produces:
 - An impulsive ratio $(f_n \tau_p)^{-1}$ less than 0.4
 - An impulsive ratio greater than 0.4



NALYSIS CORPORATION

Analysis Example

• Resulting BCF - Time curve:

Z-Stage Motion control Summary

- Z-Stage Motion:
 - Plays a role in probe performance
 - Can dramatically affect the probe contact force
 - Depending on pulse, can increase force to 200% of static levels at low overdrives
- Controlling factors:
 - Materials Probe Tungsten BeCu Ni
 - PCB / Stiffening Layers / Stiffeners
 - Geometry PCB Diameter / Thickness (Diaphragm effects)
 - Probe Diameter / Length / Style / Interposers
 - Support mechanisms Probecard Tray

electroglas

Z-Stage Motion control Summary

- Benefits Increased forces Break Oxides
 - Provides ability to use smaller probe diameters
 - Reduce probe layers
 - Tighter pitch
 - Exploits Kinetic Energy less overdrive reduced scrub
 - Good for small pad applications
 - Expands ability to use existing probecard technologies in future applications

Z-Stage Motion control Summary

- Detriments if not controlled
 - Can create too high a force that can penetrate underlying pad circuitry
 - Strike-through
 - Reduce probecard life
 - Damage probes

Z-Stage Motion control

- Acknowledgements:
 - Electroglas for working in collaboration with ProbeSolutions
 - ESACorp Engineers for analysis support
 - MSC.Software Corporation DYTRAN support
 - IEEE SWTW
- More about us:

http://www.ProbeSolutions.com http://www.ESACORP.net

