Prober and Probe Card Analyzer Performance Under Load

Raymond Kraft, Ph.D. Applied Precision, Inc.

South West Test Workshop 5 June 2001 San Diego, CA USA

Presentation Agenda

- Motivation
- Loads and Deflection Mechanisms
- Probe Tip Mechanics
- Loaded Prober and Probe Card Analyzer (PCA) Performance
- Summary and Conclusions

Motivation

Increasing Loads + Tighter Accuracy

- No matter how stiff we design stages, if we're driven to scrutinize closely enough, we'll always see the effects of deflection under load
 - Deflection can impact yield
 - \Rightarrow Deflection under load increasingly important
- Presentation Objective:
 - Understand manifestations of deflection under load to aid problem identification
 - Suggest means of reducing effects of deflection under load

Normal Loads and Deflections

- Direction: Perpendicular to wafer and probe array surface
- Origin: Probe tip stiffness

ightarrow

- Generally linear with overtravel
- Vertical probe technology can be non-linear
- z-direction compliance ⇒ z-direction deflection

AppliedPrecision Enabling the world's core technologies

Normal Loads and Deflections

- Normal load effects on scrub
 - z-deflection reduces overtravel \Rightarrow shorter scrubs
 - Normal force reduced
 - Overtravel can be adjusted to account for expected compliance
 - Adjustment errors produce longer or shorter scrubs

Transverse Loads and Deflections

Transverse Loads

- Direction: In-plane
- Origin: Probe tip friction
- Symmetry: Transverse loads largely cancel on average
- Potential for deflection-induced errors with asymmetric probe orientations

Torsional Loads and Deflections

- Origin: Center of load does not pass through center of stiffness
 - ⇒ Rotation about center of stiffness
 - Torque: T = FI
 - Rotation: θ = F I c_{rot}
 - Effects:

0

- Dependent on center of stiffness
- Lateral deflection often dominant
- Vertical deflection

Center of Stiffness Offset

Normalized Offset Relative to Center of Force

Goal: Minimize Offset

X Center of Stiffness Offset

Y Center of Stiffness Offset

Largest moment arms \Rightarrow Deflection Potential

Chuck Deflection from Torsion

3σ Normalized Scrub Alignment Variation Under Load vs Array Size

Factors

 \bullet

- Array size
- Number of pins on chuck
- Center of load relative to stiffness

Probe Geometries

- Cantilever Probes
 - Longitudinal deflection
 - Stiff axis
 - 1:1 deflection into scrub
 - Lateral deflection
 - More flexible axis
 - Probes tend to drag somewhat - reduces sensitivity to deflection effects
 - <1:1 deflection into scrub
 - 0.3:1 common

AppliedPrecision

Enabling the world's core technologies

Cantilever Probe Lateral Deflection

Probe Geometries

Vertical Probes

- Relatively compliant with respect to in-plane forces (e.g. friction)
- Probes are "dragged" with chuck as it deflects
- Deflection induced error governed by high probes
- Highly planar arrays forgiving of deflection even though loads can be high

odDrocis

Enabling the world's core technologies

13

Enabling the world's core technologies

Vertical Probe Deflection

Effects of Friction and Probe Stiffness on Deflection

PCA: Cantilever Deflection Estimation

Co-located, opposing probes

0

- Co-located \Rightarrow Equiv loads, Equiv deflections for PCA
- Equal and opposite variations in scrub length
- Equal and opposite variations in scrub angle
- Data can be used to estimate deflection

Deflection \Rightarrow bimodal distribution of scrub length and/or scrub angle

- Dependent on compliance in each axis

Cantilever: Statistical Distribution

High Stage Compliance in Scrub Direction Normalized Scrub Length Distribution

Cantilever: Statistical Distribution

Low Stage Compliance in Scrub Direction Normalized Scrub Length Distribution

Prober: Cantilever Scrubs

• Rotation under torsional load \Rightarrow lateral deflection

18

Enabling the world's core technologies

• Wafer scrub example

P of

Center of stiffness at wafer center

-

680

– 1 x 2 DUT

Deflection Compensation

- Modeling & Estimation
 - Model chuck compliance as a function of location
 - Experimentally determine load/displacement influence coefficient map
 - Estimate influence coefficients based on known component values and FEA
 - Model probe loads
 - Nominal probe gram force parameter and overtravel
 - Calculate total load and load centroid
 - \Rightarrow Estimate Chuck Deflection

Deflection Compensation

Passive Compensation

- Post-process results, and remove estimated deflection from measurements
- Possible only for PCA's
- Active Compensation
 - Actively translate chuck using deflection estimates
 - Estimate real-time loads and deflections
 - Any prober compensation needs to be active

Deflection Compensation

Deflection Compensation Example

Conclusions

• Ways to reduce probe scrub errors:

- Cantilever and Microspring Technology
 - Reduce probe gram force and overtravel
 - Minimize distance from chuck center of stiffness to center of load
 - Optimize card orientation: align probes with least compliant axis if possible
 - Reduce chuck compliance

Conclusions

• Ways to reduce probe alignment errors

- Vertical Technology
 - Tighten probe card planarity if possible
 - Minimize distance from chuck center of stiffness to center of load
 - Reduce probe gram force
 - Minimize chuck compliance
 - Overtravel not a significant factor

Conclusions

- Deflection under load increasingly important issue
- Deflection can be estimated from standard test data, and quantified
- Deflection may be minimized proactively in a number of ways
- Deflection effects may be minimized via compensation

