Probe Card Metrology For Mixed Signal Probe Cards

How do I test this probe card with all these #@! relays and components?

By

Rod Schwartz, Daniel Kosecki & Russ Allred Integrated Technology Corporation

Introduction

- Testing Mixed Signal & Other Types of Cards
- Any Card with Components or Relays
- Definitions & Examples
- Test Methods & Techniques Available Now
- Work-Arounds for Untestable Circuits
- Futures

Definition of Mixed Signal

- Multiple Technologies on One Card
- Many & Varied Components on Card
- May Have Linear, RF, Digital, Etc.
- R, C, L, Networks, Diodes, Active Circuits
- Relays

RF Probe Card – Courtesy Artest

RF Probe Card – Courtesy Artest

Memory Card – Courtesy Agilent

Reasons for Testing Components

- Presence/Absence of Component
- Value of Component
- Circuit may work without it
 - May not work correctly
- Performance may degrade
 - Oscillator at wrong frequency
 - ◆ Binning to wrong speed category
 - ◆ Filters at wrong frequency
 - ◆ Rise time control wrong

Resistor Test

- Series In series with probe
- Parallel Between probes (Edges/Pogo's)
- Value +/- tolerance

Capacitance Test

- Parallel Between Probes (Edges/Pogo's)
- Series In series with probe
 - ◆ Requires AC measurement techniques
- Polar Applied voltage polarity specified
- Non-Polar Polarity not critical
- Value +/- Tolerance
- Leakage Maximum Limit
- Important to Test Each Component not Equivalent

Relay Functional Test

- Basic operation
- Contacts Open/Close
- Function of associated Components
 - ◆ Type
 - Form A N/O
 - ◆ Form B N/C
 - ◆ Form C
- Flyback Diodes

Relay Parametric Test

- Pull-In/Drop Out Voltage
- Coil Current
- Turn On/Off Times
- Closed Contact Resistance
- Open Contact Leakage
- Intermittent Operation

More Complex Tests

- Resistor Networks
- RC Networks
- Inductors
- Diodes
- Crystals
- Active Devices
 - Digital
 - ◆ Linear

Basic Electronic Measurement System

RESISTORS

- Wide range of values
- Milliohms to Megohms
- Kelvin measurements required
- Low values
- Integrity check
- Series & Parallel cases
- Probe to Probe
- Series with probe
- Networks

RESISTOR TEST METHODS

- Low Values
 - ◆FI/MV
 - ◆ Kelvin required
- High Values
 - ◆ FV/MI
 - ◆ Low current measurements

Series Resistor Test

Resistor Network

Primary Test Path

Resistor Voltage Divider Network

CAPACITOR TEST METHODS

- Charge/Slope Method
 - ◆ Works well for large capacitors
 - ◆ Limitations at low values
 - ◆ Finds some problems AC will not
- AC Impedance Method
 - Works better on small capacitors
 - ◆ Easier to compensate for stray capacitance
 - ◆ Limitations at high values
 - ◆ Correlates with Capacitance Meter

Capacitance Measurement System

Capacitor Calculations

Capacitance Error Sources

- Stray Capacitance
 - ◆ Adds to Capacitor Value
 - ◆ Multiplexer (Fixed)
 - ◆ Wiring (Variable)
- Leakage
 - ◆ Makes Capacitor Look Larger
- Series Resistance
 - ◆ Makes Capacitor Look Smaller
 - Kelvin Connection Critical

Cap Measurement Errors

Capacitor Leakage

- Critical parameter
- DC Test
- Makes Capacitor Value Look Higher
- Dielectric Absorption
 - ◆ Makes Leakage Hard to Measure
 - ◆ Increases Settling Time Considerably
 - Causes Problems with Discharging

Dielectric Absoption

- A measure of the reluctance of a capacitor's dielectric to discharge completely usually measured in percent of original charge.
 - ◆ Def. Illinois Capacitor, Inc.

Leakage Test

Leakage Current: Capacitors shall be stabilized at the rated temperature for 30 minutes. Rated voltage shall be applied to capacitors for 5 minutes using a steady source of power (such as a regulated power supply) with 1000 ohm resistor connected in series with the capacitor under test to limit the charging current. Leakage current shall then be measured.

At + 25°C, the leakage current shall not exceed the value listed in the Standard Ratings Table.

At + 85°C, the leakage current shall not exceed 10 times the value listed in the Standard Ratings Table.

Source: Vishay Sprague Tantalum Capacitors Data Book Pg 23.

CAPACITOR TEST LIMITATIONS

- Background Capacitance
 - ◆ Limits low end accuracy
- Leakage
 - Causes errors in value
 - ◆ Test Times are Long
- Polar Capacitors
 - Must be properly biased
- Dielectric Absorption
 - Capacitor Exhibits "Memory"
 - Makes Complete Discharging Difficult
 - Looks like leakage

Discharging Capacitors

- Must discharge for other tests
 - ◆ Prevent "Pumped-Up" Voltages
 - ◆ May Cause Errors in Wire Check
- Damage to probes or tester
 - ◆ Arcing at Probe Tips
- Dielectric Absorption
 - May retain residual charge
 - ◆ Increases required discharge time

Leakage Versus Time

RELAYS

- Connect alternate components
- Change test path
- May be higher voltage than circuit
- Coil shorts to test circuit are BAD!
- Catch diodes required
- Performance may be critical to test
- Functional test mandatory
- Parametric test desirable
- Intermittent function test desirable & Useful
- Relays added to prevent probe damage

RELAY TEST METHODS

- Test associated components or paths
- Test open/closed cases
- Functional test
- Test relay function directly
- Contacts
- Parametric Test

Relay Parametric Tests

- Coil resistance
- Coil current
- Catch diode presence
- Pull-In/Drop-Out Voltage
- Contact resistance
- Turn-On/Turn-Off Times

Relay MUX - One Channel

Relay MUX

Relay MUX - Logic Driver

Logic Drive - ProbiltTM MUX

Logic Drive - ProbiltTM MUX

Futures

- More Complex Component Networks
 - ◆ New Programming Techniques
- Logic & Linear IC's on Probe Card
 - ◆ New Programming Techniques
 - ◆ Multiple Supply Voltages
 - ◆ "Full" Logic Testing
- Ultra Low Leakage

Acknowledgements

- Rex Lewis, TI
- Ali Jafari, Agilent
- Jerry Pilkay, Artest
- Nick Sporck, Form Factor

