

High Parallelism Memory Test Advances based on MicroSpring™ Contact Technology

Thomas Homorodi- Director of Marketing Robert Martin – Technical Sales Eng. Southwest Test Workshop June 2001

Contents

Introduction to FormFactor FormFactor Mission 100 mm Four Touchdown Probe Solution Cost of Ownership **Specifications** Performance **Electrical** Scrub alignment over temperature MicroSpring[™] array durability Summary and Conclusions

Introduction to FormFactor

FormFactor

Established 1993

Livermore, CA

325 Employees

WaferProbe[™] Probe Card Products PH50, PH75 and new PH100 T1/T2.1 MicroSpring[™] contact technology High parallelism memory and C4 probing

FormFactor Mission

Reduce the cost of test through:

- Increased parallelism
- Improved productivity
- Reduced maintenance and cleaning

Meet new technology needs:

- Reduced pad size and pitch
- Improved electrical and mechanical performance
- Support new tester platforms

Extend technology developed for DRAM to provide solutions for FLASH and logic probing

Trends in High Parallelism Probing

Current and Historic Trends

Test Cost of Ownership Analysis

- 8" Virtual FAB 25,000 wafer starts per month Product - 128M SDRAM
 - •Good Die Value = \$4
 - Die Size = 50 mm^2
- Test time increases 15% per 2x test parallelism
- Compare the following situations:

Test	32 DUT	64 DUT	117 DUT
Parallelism			
Tester Cost	\$1.8M	\$2.2M	\$3.5M

High Parallelism Probing – Reduces Touchdowns required

Number of Touchdowns

Homorodi/ Martin

High Parallelism Probing – Reduces Test Cost per DUT

Total Test Cost per Good Die

Homorodi/ Martin

High Parallelism Probing – Delivers Overall Cost Savings

5 Year Test Cell Equipment Costs

PH100 - 4 Touchdown Solution:

Spring Technology and Active Area:

- •T1 105 mm x 110 mm
- •T2.1 112 mm array diagonal
- •Planarity < 38 microns across array
- •Both support:
 - Lead on center and edge pad designs
 - •Odd # of rows and columns

PH100 - 4 Touchdown Solution:

Probe Head:

- •Multilayer ceramic
- •7544 I/O resources
- •Supports maximum resources of Probe One and T5375
- •x128 test parallelism possible

MicroSpring[™] Test Interface System

Controlled impedance PCB

MicroSpring[™] Interposer

Printed circuit board to ceramic interface

Wide range of compliance

Capable of 15 mil adjustment range

PH100 - 117 DUTs, 128M SDRAM

MicroSpring[™] Array Performance

Measured on the API PRVX₂ Electrical Performance -C(res) Alignment and planarity of x117 array Scrub Mark Verification on API wafer WoRx Alignment across array at 25 and 88C

4797 MicroSprings were measured on API PRVX₂

PH100 Path Resistance

Homorodi/ Martin

PH100 Planarity

Scrub Alignment vs. Temperature

Scrub mark alignment Distance from center of pad to center of scrub API waferWorx: 1170 Duts x 42 pads/DUT = 49,140 scrub marks 3 wafers probed at 25°C and 88°C Delta scrub alignment 25°C vs. 88°C

Scrub Alignment at 25°C

Scrub Position at Ambient - Prober Error Removed

Scrub Alignment at 88°C

Scrub Position at 88C - Prober Error Removed

Delta Scrub Alignment 25°C to 88°C

X Position from Pad Center

Summary and Conclusions

Increases in parallelism significantly reduce overall cost of test

MicroSpring[™] technology is capable of supporting large, high pin count, array areas

FormFactor's PH100 will support the next generation of high parallelism probe arrays while maintaining stability over time and temperature

Special Thanks

Alec Gomez – Teradyne Touchdowns on x117 PC John Strom – API WaferWorx analysis Chris Buckholtz – FormFactor Experiment support