ALTIS Semiconductor

An IBM INFINEON Company

TRADE OF T

BONDABILITY RELATED TO PROBING

« WHEN PROBING AND BONDING ARE NOT GOOD FRIENDS ! »

By Eugene LIM and Dominique LANGLOIS with Patrick BUFFEL

AGENDA

Part 1/4 Impact of probing on wire bonding

- Introduction of Infineon plants
- ➢ Ball bonding sequence and failure mode
- Data collection and analysis

Part 2/4 Probing process

- Altis Semiconductor presentation
- ➢ Final sort process flow
- ➤ Why several touch downs...
- Probe marks size, build-up height, exposed-oxide mechanisms

Part 4/4 Conclusion

- Bonding concerns
- \succ What could be the solutions...

Part 3/4 Probe-card improvements

- ≻ How to improve Cantilever (APS/MJC)
- Low pitch micro-spring PC for tomorrow (FFI)

Infineon (Corporate Back End - CBE)

Overview

Assembly & Test:Logic & Power Ics / Discretes / Optocoupler / High frequency Components & SensorsEmployees:7510Area:111 400 m²

Singapore - Assembly & Final Test of Logic ICs

Country:	Singapore
Products:	Applications Specific ICs Microcontrollers Power ICs High Frequency ICs
Packages:	P - TSSOP P - MQFP P - TQFP P - LFBGA P - VQFN
Testers:	Logic, Analog & Mixed Signal
Production* :	583' (pieces 00/01)
Employees:	2000 (without Sales, DC, EZM & AIT)
Floor space: Established:	31410 m ² 1993 (Founded 1970)

Wire bonding (thermosonic) on the bond pad - Ball bonding sequence

What is Lifted Ball Bond (LBB) & Non Stick On Pad (NSOP)?

What can cause Lifted Ball Bond (LBB) & Non Stick On Pad (NSOP)?

Classification of exposed oxide, big probe marks, and Aluminum build-up

Probe Mark measurement Exposed Oxide measurement Probe mark area Exposed oxide area $= 48.4 \times 15.5$ $= (3.14 \times 6.68 \times 6.68) / 4$ $= 750.2 \ \mu m^2$ $= 35.03 \text{ } \text{um}^2$ % of probe % of exposed oxide area vs bond area vs bond pad opening pad opening $= 750.2 / (72 \times 72)$ $= 35.03 / (72 \times 72)$ = 750.2 / 5184= 35.03 / 5184= 14.5%= 0.68%Diameter = $6.68 \mu m$ **Aluminum Build-Up measurement** Aluminum build-up Datum plane 1. Focus is done on the selected bond pad, making it the datum plane. 2. Move the scope vertically in the z-axis to focus on the tip of the build-up. 3. This vertical displacement is the height of the Aluminum build-up.

Instruments used for non-destructive (dimensioning) and destructive tests (ball shear)

Microscope

Lim Hock Chuan Eugene June 2001

Ball shearing machine

What is the impact of Ball Shear and % of Lifted Ball Bond on bond pads with big/multiple probe marks?

What is the impact of Ball Shear and % of Lifted Ball Bond on bond pads with exposed oxide?

Lim Hock Chuan Eugene June 2001 Page 11

What is the impact of Ball Shear and % of Lifted Ball Bond on bond pads with Aluminum build-up?

Lim Hock Chuan Eugene June 2001 Page 12

- A Company built from the IBM Microelectronics Corbeil-Essonnes site
- 50 / 50 IBM / Infineon Joint Venture (07 / 99)
- A conversion from DRAM centric focused product mix to Logic centrix focused mix
 - ✓ LOGIC : 0.35µ / 0.25µ Aluminium / 0.18µ Copper / 0.13µ Copper Low K
 - ✓ Embedded MEMORY: DRAM 0.35μ / 0.20μ / 0.17 μ
- World class customers leaders in Telecoms and Computer peripherals
- Shared management IBM / Infineon
- Capacity sharing 50 / 50 based on normalized capacity
- Investment plan : about 1 Billion Euro in the years 2000/2001

WHEN PROBING AND BONDING ARE NOT GOOD FRIENDS !

Allow Prober to operate needle to pad alignement

JUNE 6, 2001 San Diego SWTW

K

FINAL SORT : FROM SHORT TO LONG PATH...

Exemple 1 : The short way...

WAFER SORT : FROM SHORT TO LONG PATH...

Exemple 2 : A long way to go...(logic product with EDRAM, SRAM, CPU)

ALTIS Semiconductor

An IBM INFINEON Company

WHY SEVERAL PROBE MARKS...

- \Rightarrow PROCESS REASONS :
- Different tests (Prefuse, Postfuse, Analog)
- ≻ Restest (contact problems, yield issues)...
- \Rightarrow PROBE-CARD REASONS :
- Over probing due to probe-card (Dut layout)

WHAT MAKES THE SIZE OF A PROBE-MARK...

⇒ PROBE-CARD REASONS :

- ➤ Tip size, tip shape
- Needles planarity, PC warping (temperature)
- ➢ Needle gram force
- \Rightarrow PROBER REASONS :
 - Z height detection, profiler precision
 - Chuck, prober table planarity
 - Test head docking influence
- \Rightarrow PRODUCT REASONS :
 - ➢ Pad material hardness
- \Rightarrow HUMAN REASONS :
- \succ Overtravel set by operator

JUNE 6, 2001 San Diego SWTW

10

HOW CAN EXPOSED OXIDE HAPPENED ?

⇒ PROBE-CARD REASONS :

- ➢ Tip size, tip shape
- Needles planarity, PC warping (temperature)
- ➢ Needle gram force
- Scrub lenght (beam angle, needle layer related)

\Rightarrow PRODUCT REASONS :

- Pad thickness (technology dependant)
- Pad material hardness
- ➢ Pad structure

⇒ PROBER REASONS :

- ➤ (same as page 18)
- ➤ Double Zup
- \succ Z chuck speed

\Rightarrow HUMAN REASONS :

Excessive overtravel set by operator

AND WHAT ABOUT THE SCRUB MARK BUILD-UP HEIGHT !

A VERY DIFFICULT AND NEW PARAMETER TO CONTROL AND UNDERSTAND (SO FAR NO PROBE-CARD SPECIFICATIONS LINK TO THIS PARAMETER..)

⇒ PROBE-CARD REASONS :

Needle shape (flat, radius, semi-radius, beam angle)

Needles planarity, PC warping (temperature)

➢ Needle gram force

≻Beam, knee, taper angle

\Rightarrow PRODUCT REASONS :

≻Pad material hardness

\Rightarrow PROBER REASONS :

 \succ (same as on previous pages)

\Rightarrow HUMAN REASONS :

≻Overtravel set by operator

CANTILEVER PC IMPROVEMENTS

Layer	Needle Diameter (φ)	Angle	O/D (µm)	Tip Length (μm)	Beam	Knee	Taper	Contact Force (g)	Scrub amount (µm)	Remark
1	0.15	5	100	170	2763	0.050	1.5	9.37	13.96	28.96
2	0.15	7	100	250	2763	0.050	1.5	9.37	20.35	35.35
3	0.15	9	100	350	2763	0.055	1.5	9.69	27.55	42.55
4	0.15	11	100	450	2763	0.060	1.5	9.98	34.78	49.78
				4		1	3	2		4

CANTILEVER PC IMPROVEMENTS

CANTILEVER PC IMPROVEMENTS

		Needle			Tip				Contact	Scrub	
	Layer	Diameter	Angle	O/D	Length	Beam	Knee	Taper	Force	amount	Remark
		(φ)		(µm)	(µm)				(g)	(µm)	
	1	0.1	6	70	230	1749	0.044	1.134	5.01	13.57	28.57
	2	0.1	8	70	290	1749	0.048	1.088	5.35	18.79	33.79
	3	0.1	10	70	350	1749	0.051	1.042	5.6	21.91	36.91
_	1	2		3	1	2	3		1	2	3
	•	•	1		3	1			3	1	8

LOW PITCH MICRO SPRING PC

Fine Pitch Probing Critical Factor Probe Tip Size

- Controlling the probe tip size is critical for maintaining scrub mark size
- Fine pitch/Small pad probing may require < 10µm probe tips JUNE 6, 2001 San Diego SWTW

LOW PITCH MICRO SPRING PC

Fine Pitch Probing Critical Factor Alignment Repeatability

- 641 MicroSprings measured on API PRVX2
- Touchdowns performed at $75 \mu m$ overtravel

- Alignment variation leads to:
 - Passivation damage
 - Increased Maintenance
 - Yield loss
- Hitting the center of the pad is more critical for tighter pad pitch and smaller pads
- Alignment repeatability = PRODUCTIVITY

LOW PITCH MICRO SPRING PC

- Scrub Depth 500nm @ 40µm overtravel
- 10-15um probe tip with 1.5gm/mil probe force

CONCLUSION PART 1

1. The presence of big/multiple probe marks, exposed oxide & Aluminum build-up will cause:

- 1.1 Ball shear readings to decrease.
- 1.2 % of lifted ball bond rejects to increase.
- 2. Probe mark area > 25% will increase lifted ball bond rejects.
- 3. The presence of exposed oxide is already a reject, and it will exhibit lifted ball bond rejects.
- 4. Aluminum build-up > 3.40um will increase lifted ball bond rejects.
 - The simulation of probe mark defect modelling in this area will help to represent a more universal impact of wire bondability due to probing (the 3 elements covered).

ALTIS Semiconductor

An IBM INFINEON Company CONCLUSION PART 2

SHORT TERM SOLUTIONS

- OPTIMIZE WAFER MAP INDEX (TO AVOID OVER PROBING)
- REDUCE PROBE-CARD SPECIFICATIONS
- PROBER IMPROVEMENTS :
 - IMPROVE PRECISION (calibration, preventive maintenance)
 - USE ALL POSSIBLE OPTIONS (soak time, double profiler, etc...)
 - REDUCE OVERTRAVEL LIMIT
- USE A PROBER / TESTER INTERACTIVE LOOP CONTACT
- USE WAFERWORX (API) TO OPTIMIZE PC SETUP
- CHARACTERIZE PROBING WITH WAFERS IN REAL PRODUCTION CONDITION

An IBM INFINEON Company CONCLUSION PART 3

LONG TERM SOLUTIONS

- HAVING UNIVERSAL TESTERS (memory, analog and logic test)
- USE VERTICAL PROBING (to avoid scrubbing)
- FUSE DURING TEST (electrical fuse)
- WAFER SORT AFTER BONDING (exemple : WOW from FFI)
- PACKAGE TEST ONLY (using electrical fuse if needed)
- DEDICATED PAD FOR BONDING...
- ETC...

ACKNOWLEDGEMENTS

THANKS TO ALL PEOPLE INVOLVED IN THIS PRESENTATION

- Patrick BUFFEL (Altis Semiconductor)
- Roland BLASS and Thomas GÜNZEL (APS/MJC)
- Bob MARTIN (FORM FACTOR)

Contact : Dominique LANGLOIS

Altis Semiconductor

224, Bd John Kennedy

91105 Corbeil-Essonnes Cedex France

Tel: (33) 1.60.88.69.33

Email: dominique.langlois@altissemiconductor.com

Contact : Lim Hock Chuan Eugene Infineon Technologies 168, Kallang Way Singapore 349253 Tel : (65) 8400457 Email : eugene.lim@infineon.com