

Modeling Distributed Power Delivery Effects in High Performance Sort Interface Units

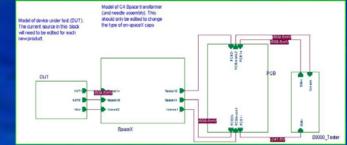
Brett Grossman

Tim Swettlen

ITTO Electrical Modeling Intel Corporation

ITTO Electrical Modeling

Today

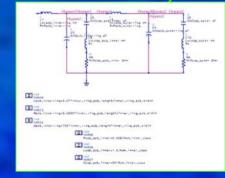

Power Modeling: A look back

Menu based:

Decoupling:

- •Standard (1.0uF, 0.1uF, 0.01uF):
- •Other (custom):

Spice Based: (lumped time domain)

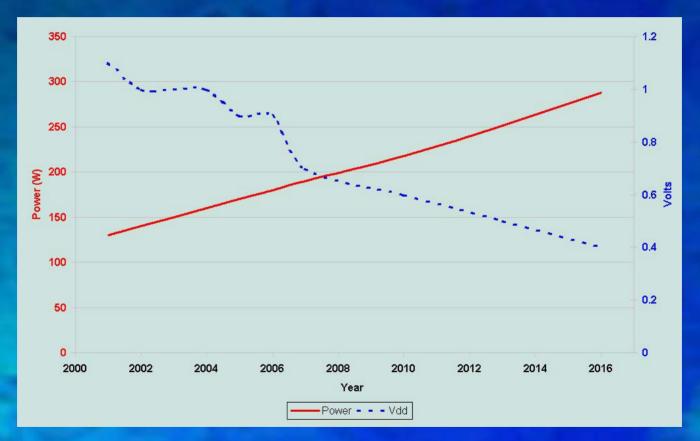


1990

time

PRODUCT:	USES: Vnoise = lccmax			
(note: fill in grey squares with product specific da		Х	Ŷ	
Die Size, approximate (mils)		443.0	506.0	
Clock frequency Fmax (M		300		
Assumed contact resistance (Ohms)			0.50	
	Power supply name:	DPS1	DPS0	
	Assigned function:	Periphery	Core	
Allowable Vcc + Vss noise, as percent of Vcc		10.0%	12.5%	
Vcc (volts)		2.750	2.750	
Iccmax (Amps)		1.00	13.00	
di - Maximum change in Icc (Amps) = 2 * Iccma:		1.00	26.00	
Assumed dt (seconds) - uses 1/4 of 1/ Fmax)		1.00E-9	833.33E-12	

Spreadsheet based: (lumped freq. Domain)



ADS Based: (lumped time/freq domain)

2002 Southwest Test Workshop Brett Grossman June 9,2002

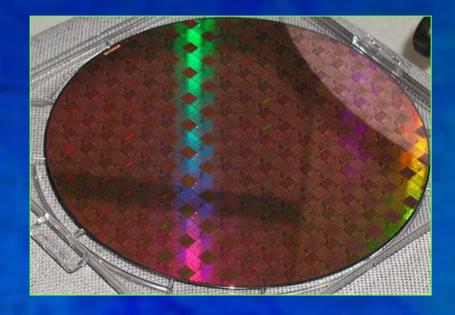
Power Modeling: A look forward

Continuing growth in power demand drives the need for refinements in modeling power delivery

Source: 2001 ITRS Roadmap

ITTO Electrical Modeling

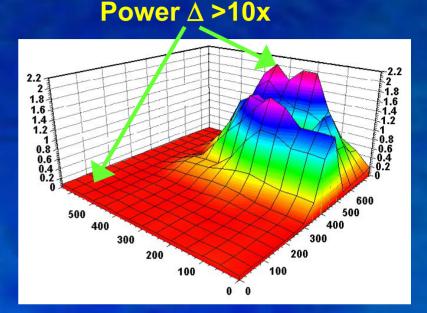
2002 Southwest Test Workshop Brett Grossman June 9,2002

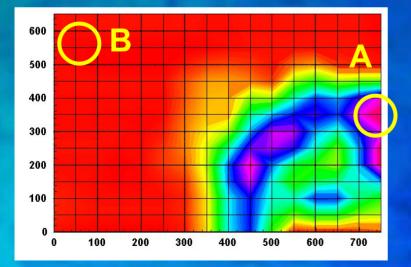

intal

Different viewpoints of 100 Amps

What might it look like if ¹/₂ the DUT were idle?

ITTO Electrical Modeling

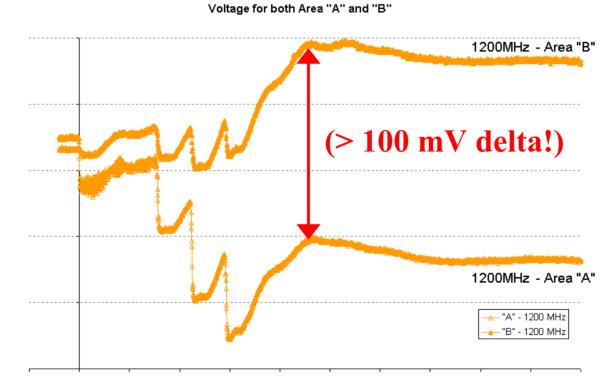




The Problem

- Device current demand
 - Varies with device stateVaries with time
 - Varies with X-Y position

- What is the impact:
 - Of probe or capacitor placement?
 - Of measuring Voltage at points A & B?
 - Of locating supply sense at points A & B?


2002 Southwest Test Workshop Brett Grossman June 9,2002

• Example :

□ Measured droop voltages at two die locations (A&B)

Time (usec)

Device running 80% max speed executing reset sequence. Voltages measured at the DUT/probe interface.

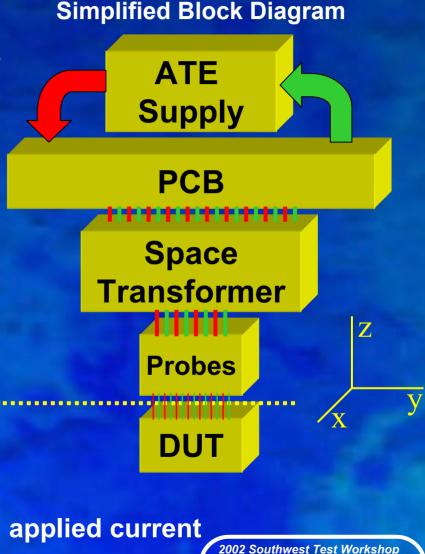
2002 Southwest Test Workshop Brett Grossman June 9.2002

Voltage at Die (V)

Power Delivery System (PDS)

PDS

- Uniform design
 - □ Probes, decoupling, etc.
- Modeling only represents lumped components
 No (X,Y) understanding

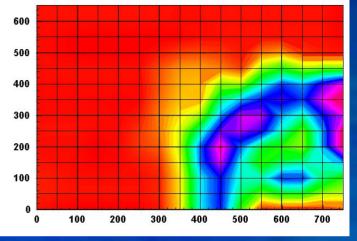

<u>DUT</u>

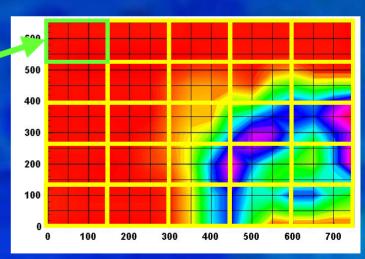
- Non uniform demand
- Non uniform decoupling
- Non-uniform parasitics

<u>Vdroop</u>

- Performance metric for PDS
- Measure of voltage change to an applied current

ITTO Electrical Modeling


Brett Grossman June 9,2002

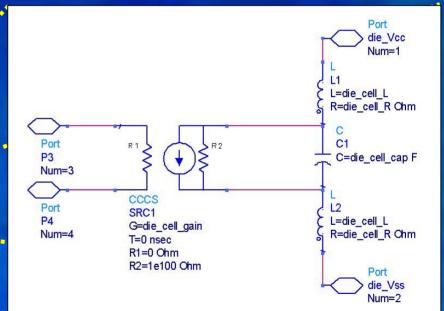

Understanding a solution – DUT level

DUT non-uniform elements
I source
RLC elements
All data from DUT simulations

Approach to issue:
Discretize die area
Mesh size is a function of transient frequency
Model components with spatial variance
Power demand
device decoupling
metal grid parasitics

XY power map

Discretized power map


2002 Southwest Test Workshop Brett Grossman June 9,2002

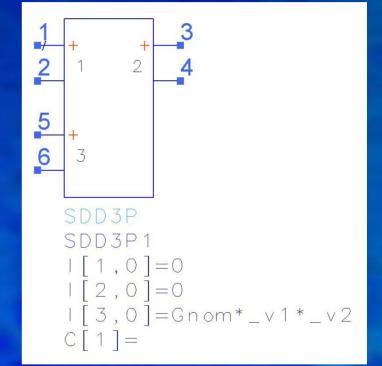
<u>Die cell model</u>

- Typical model
 - Controlled Current Source
 - □ 'constant' current ramp
 - □ RLC parasitics
 - metal grid parasitics
 - > decoupling

die	die	die	die	die	
cell	cell	cell	cell	cell	
die	die	die	die	die *	****
cell	cell	cell	cell	cell	
die	die	die	die	die	
cell	cell	cell	cell	cell	
-	100				
die	die	die	die	die	
cell	cell	cell	cell	cell	
1.00					
die	die	_ die _	die	die	
cell	cell	cell	cell	cell	

m x n array of die cells

ITTO Electrical Modeling



<u>Die cell model</u>

Alternate model

Controlled current source
 Control voltage into port 1
 DUT voltage into port 2
 RLC parasitics
 still included though not illustrated here

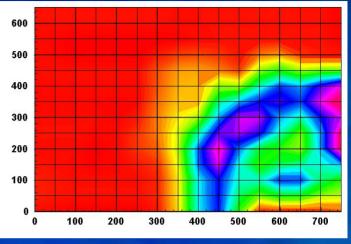
Current ramp (port 3) is now a function of the instantaneous voltage across the cell



ITTO Electrical Modeling

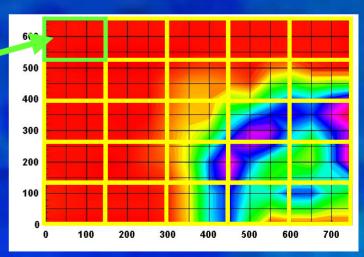
Die cell model

Typical vs. Alternate model response



'constant' current ramp

ITTO Electrical Modeling


Understanding a solution – Probe level

 Probe cell definition
 Meshed similar to the DUT
 Cell modeled as probe pair w/ coupling

in

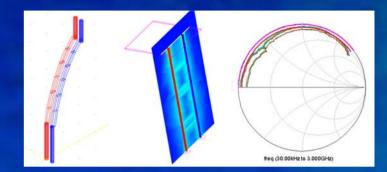
XY power map

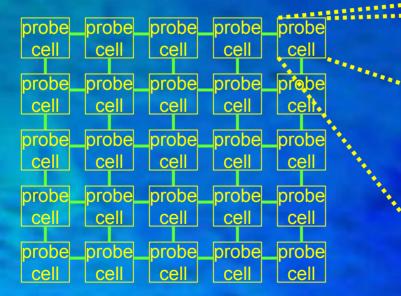
Discretized power map

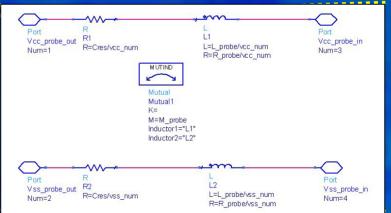
2002 Southwest Test Workshop Brett Grossman June 9,2002

Considerations:

 Take advantage of fewer probes in low power area
 Allow for increased probes in areas of high demand



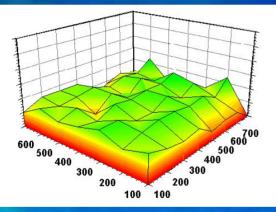

Probe cell model


Probe models

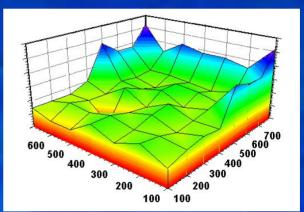
Probe styles fully characterized

- Agilent 8753 VNA
- ▶ 0.050 5.05 GHz
- Custom fixturing

m x n array of probe cells


2002 Southwest Test Workshop Brett Grossman June 9,2002

Probe cell model



- Probe uniformity
 - □ Currently do not probe every bump
 - ➤ 1 of 3, 1 of 5, 1 of 7...

Currently maintain a uniform probe array

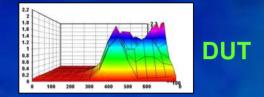
Vcc probe distribution

Vss probe distribution

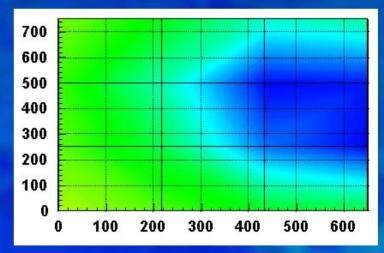
Limits our ability to meet Vdroop targets

Increased resolution required

ITTO Electrical Modeling

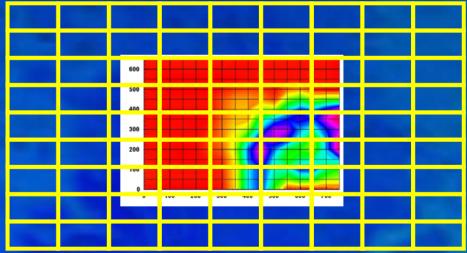


Understanding a solution – ST level


- Space Transformer
 - Space transformer expands the X-Y plane
 - It also serves to further distribute the effects of the current load

space transformer

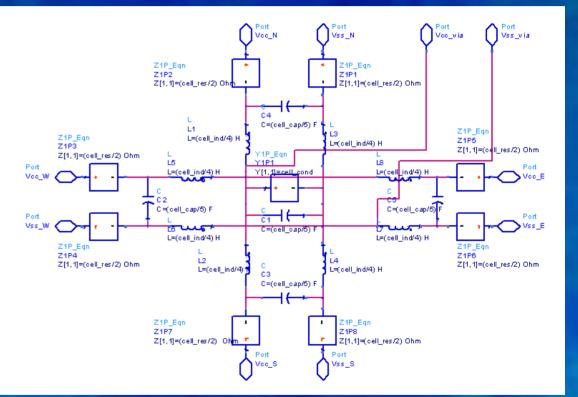
 Considerations
 Internal power architecture
 Decoupling capacitor placement


Space Transformer XY power map

ITTO Electrical Modeling

Space Transformer cell model

- ST Mesh
 - Mesh area is no longer confined to the die area
 - Continuing the same mesh as the die would produce a huge array
- Mesh size
 Again determined as a function of transient frequency
 Model reduction

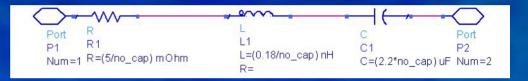

Discretized power map

ITTO Electrical Modeling

int_{el}.

Space Transformer cell model

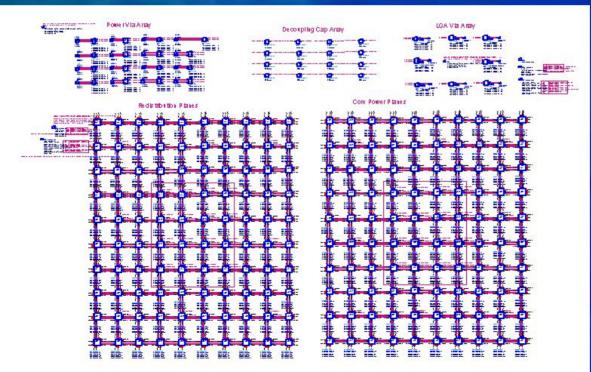
- Plane cell model
 - Common RLC terms
 - Also includes freq. Dependent losses
 - > Skin effect
 > dielectric loss
 Don't forget the vias!

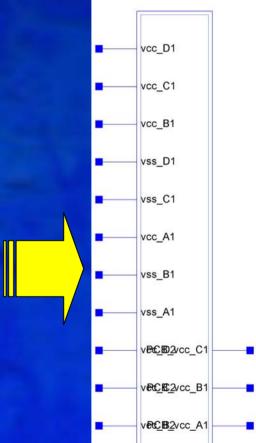

 Model elements
 Validated with test vehicles

ITTO Electrical Modeling

<u>Understanding a solution – other</u>

- Decoupling capacitors
 Library of fully characterized parts
- PCB
 Lumped model

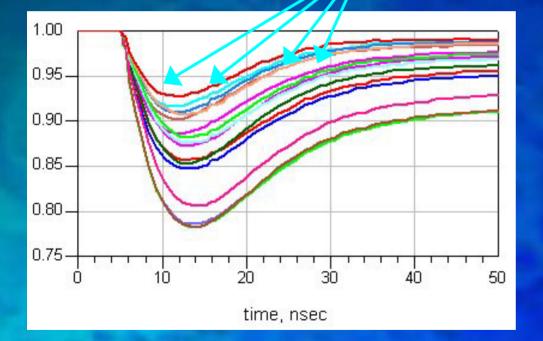


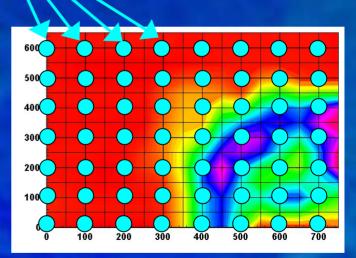

ATE supply
 Vendor provided model
 Custom model

ITTO Electrical Modeling

Bringing the model together

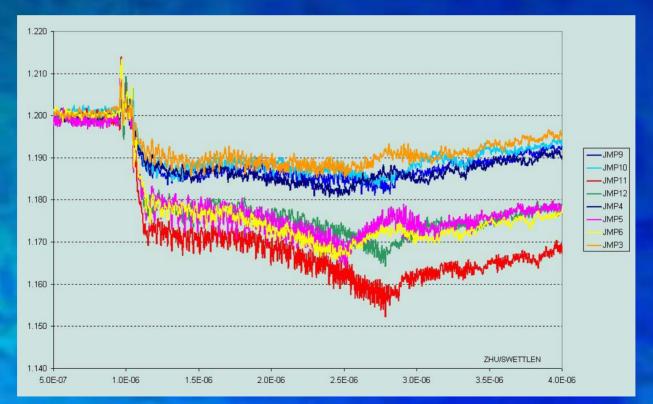
- Model assembly
 - Hierarchical
 - Large number of components in fully assembled model


intel


2002 Southwest Test Workshop Brett Grossman June 9,2002

Distributed droop simulations

Response at m x n points across the array


intel

ITTO Electrical Modeling

Next Steps

- Improved model management
- Continued refinement
- Extending the model to multi-die applications

ITTO Electrical Modeling

- Shrinking margins continue to drive refinements in power modeling accuracy
- Non-uniform power demand will further exacerbate this concern
- Question model assumptions, create measurement based models
- Distribute model elements in three dimensions

ITTO Electrical Modeling

Acknowledgement

 We would like to recognize our colleagues Kevin Zhu and Sayed Mobin for their contributions to this project

ITTO Electrical Modeling

- K. Lee and A. Barber, "Modeling and Analysis of Multichip Module Power Supply Planes", IEEE Trans. on Components Packaging and Manufacturing Technology, Part B, Vol. 18, No. 4, Nov. 1995, pp. 628-639
- Henry Wu, Jeffery Meyer, Ken Lee, Alan Barber, "Accurate Power Supply and Ground plane pair models", Proceedings of the 1998 Topical Meeting on Electrical Performance of Electronic Packaging, Oct. 1998, pp. 163-166
- M.A. Schmitt, K. Lam, L.E. Mosely, G. Choksi, and K. Bhattacharyya, "Current Distribution on Power and Ground Planes of a Multilayer Pin Grid Package", Proceedings International Electronics Packaging Society, 1988, pp. 467-475
- Larry Smith, Tanmoy Roy, Raymond Anderson, "Power Plane Spice Models for Frequency and Time Domain", Proceedings of the 9th Topical Meeting on Electrical Performance of Electronic Packaging, Oct. 2000, pp. 51-54

ITTO Electrical Modeling