Probing 10 kV and 100 A :

Challenges and Solutions for High Voltage / High Current Wafer Testing

Rainer Gaggl, Ph.D.

T.I.P.S. Messtechnik GmbH Villach, Austria office@tips.co.at

SWTW, June 2002

Overview

The D.U.T.: power semiconductors

- High voltage probing: effects going together with high voltage, solutions
- High current probecards: concepts, melting phenomena and causes
- Probe Tip Shape: T.I.P.S. "Probe Refresher"
- SmartClamp": protection of probes using active current limiting

The D.U.T.

MosFETs, IGBTs, Diodes with

- breakthrough voltages up to 6.5 kV
- forward currents up to 100 A

Power Diode, anode pad

IGBT, source and gate pads

High Voltage Testing (1)

 applied in probing breakthrough voltage of DUT
 challenges: sparking, flashovers on wafer surface and from probes to wafer

Damage on wafer surface (IGBT) due to flashover between source-pad and dicing frame structure

High Voltage Testing (2)

rule of thumb: for electrical field strength E > 2 kV/mm

flashovers may occur.

Fig. 2: high voltage test setup

E = U/d

- E ... field strenght
- U ... maximum test voltage

d ... minimum distance between high voltage pads

High Voltage Testing (3)

Theory: Physics of gas discharges

Flashover voltage as a function of gas pressure and electrodes distance is described in "Paschen" curves.

Fig. 3: Paschencurve for air [1]

Avoiding flashovers (1)

Chip design: avoid small pad distances

- + easy to test, feasible in some new designs
- not applicable for existing designs, chip area

Gas atmosphere with high dielectric strength (e.g. SF₆, CH₂Cl₂, CCl₄....) [2]

- + simple test setup
- gases are envrionmentally hazardous, very restricted use, expensive

Avoiding flashovers (2)

Testing in Liquid with high dielectric strength
 ? Wet testing process ?

High Vacuum: ionization length longer than critical dimensions on chip -> no gas discharge possible

? vacuum wafer test ?

"Luftpolster" concept

Compressed Air: breakthrough voltage in gases increase with gas pressure.

Basic idea: device is tested under compressed air

"Luftpolster" Probecard

2 kV / 100 A probecard with "Luftpolster" setup

High Current Testing

- Applied in probing forward voltage V_f of power diodes / on resistance R_{on} of IGBTs, MOSFETs
 challenges: thermal damage, melting of
 - probe tips, probe needles
 - bond pads beneath and around contact area

High Current Probecard (1)

current is distributed to multiple probes connected in parallel

ideal situation: contact and lead resistances are equal: currents are balanced

Electrical model of ideal high power probecard, 10 probes connected in parallel

High Current Probecard (2)

melting phenomena (probes, bond pad):

- due to excessive currents in single probes (> 15 A) much higher than the design current per probe
- cause: imbalanced currents in probes that arise from variations in contact resistance

Electrical model of real high power probecard, unequal contact resistances of probes

High Current Probecard (3)

Current distribution that might occur in a real high current probecard:

Probe Tip Shape (1)

"Passive" method: keep radius probe tip shape during lifetime of probecard for low contact resistance: "Probe Refresher": mechanical grinding of tip shape during probecard maintenance

flattened probe tip

... after grinding

Probe Tip Shape (2)

T.I.P.S. "Probe Refresher" machine

Probe Current Limiting (1)

"Active" method: "SmartClamp" - electronic circuitry in the lead to each probe individually limits current in each trace, has low resistance at nominal current

Probe Current Limiting (2)

"SmartClamp" module

Electrical characteristics of "SmartClamp" module

"SmartClamp" Probecard

100 A Probecard with 20 onboard SmartClamp modules

Infineon Technologies Austria AG Franz Reinwald et al.

References

[1] Der elektrische Durchschlag in Gasen, H.Hess, 1976[2] Hochspannungsisolierstoffe, A. Imhof, 1957

