Best Practice Metrology Protocol

Presented to: SOUTHWEST TEST WORKSHOP 2002

Sal Gullotta

W. Stuart Crippen

Goals of Presentation

- Provide best known practices for "metrology methodology"
- 2. Detail troubleshooting techniques
- 3. Discuss common mistakes
- Provide guidelines on when and what to test

Basic Terminology

- 1. Probe Card (PC) Assembly consisting of circuit board through test head
- Tester Metrology tool
- 3. Pogo Pins Spring contacts connecting tester to the probe card circuit board
- 4. Pogo Pin Pad Pad on PCB that contacts pogo pin
- Motherboard Tester bed containing pogo pins simulates different platforms
- 6. PCB Printed Circuit Board of the PC
- 7. Contact resistance a/k/a Cres
- 8. ODL Overdrive leakage

Step 1: First Things First

Know:

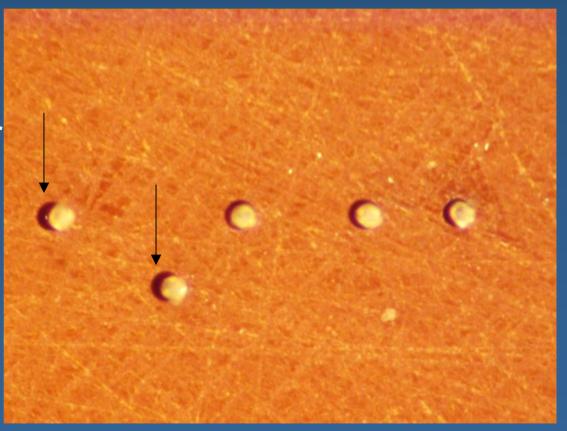
- 1. Production test requirements of the probe card
- 2. Equipment specifications *vs* testing requirements
- Applicable test techniques
- 4. Physical and electrical characteristics inherent in probe card technology current carrying capacity, deflection force, etc.

Step 2: Know The PC Specifications

- 1. Leakage
- 2. Planarity
- 3. Path Resistance
- 4. Alignment
- 5. Overdrive leakage
- 6. Wire check XY probe location to pogo pin pad
- 7. Component layout, value, type

Step 3: Determine Test Equipment

- 1. Appropriate test equipment
- 2. Mother board platform specific
- 3. Meters off-line testing
- 4. Power supplies required to drive components


Step 4: Verify Test File

- 1. Verify XY coordinate information to associated pogo pin pad (edge)
- 2. Verify component layout
- 3. Verify set-up test specifications
 - a. Overdrive
 - b. Limits physical and electrical
 - c. Dwell time

Step 5: Visual Inspection

Look for General Defects

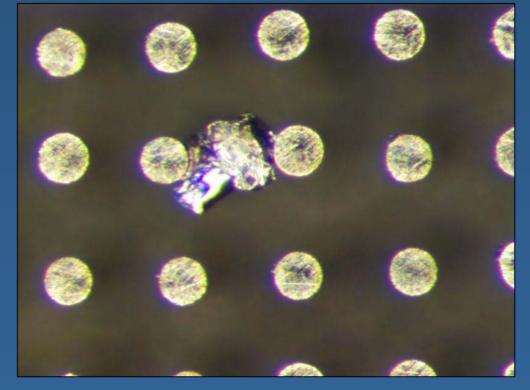
- 1. Bent probes
- 2. Debris
- 3. Hand & finger prints
- 4. Missing components, hardware

Step 6: Start Testing!

Order of testing for "first article" probe card

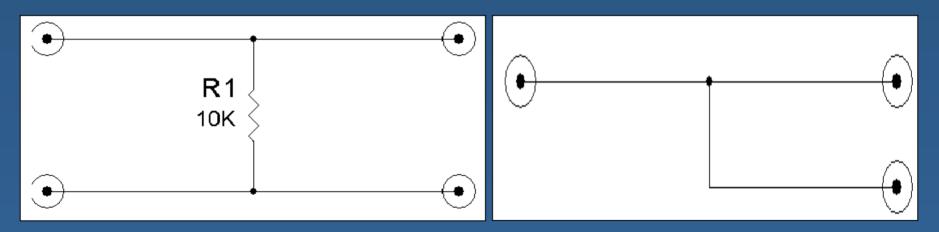
- 1. Leakage quickest, easiest test
- Bulk Planarity & Path Resistance most closely matches actual production testing
- 3. Overdrive Leakage
- 4. Alignment
- 5. Full Planarity & Path Resistance bussed probes test individually
- 6. Wire Check
- 7. Components

Troubleshooting - Basics


- 1. KISS <u>Keep it simple smarty</u> look for most obvious reasons for failure i.e. bent probe, cleanliness
- 2. Troubleshoot on tester whenever possible start with activities that allow testing to flow with minimal interruption
- 3. Different failures follow different progressions

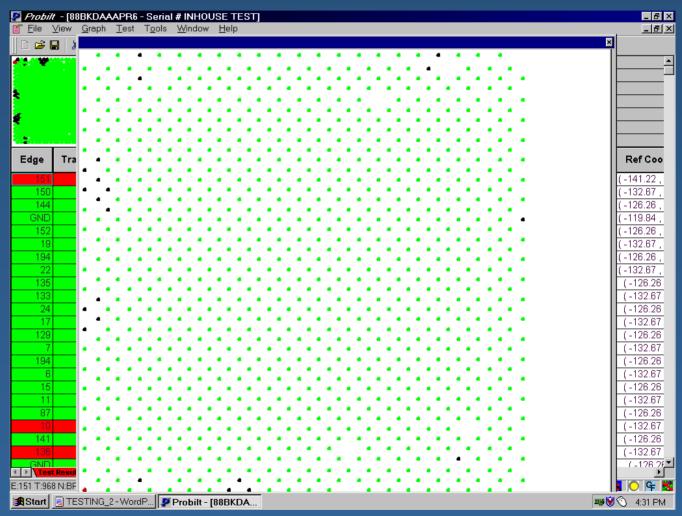
Troubleshooting PC After Leakage Test Failure

Note: Test most effected by external

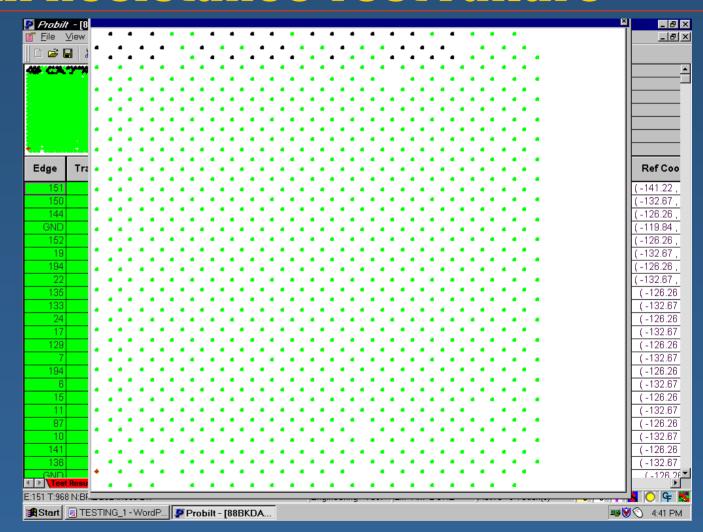

factors

Revisit
 cleanliness issue
 especially debris
 and hand and
 fingerprints

... After Leakage Test Failure (con't.)


- 2. Check components
 - a. Locate defective components
 - b. Identify apparent failure due to component layout i.e. resistor between two traces

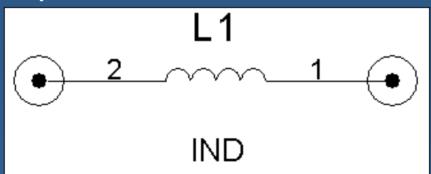
Verify test equipment – test probe card off line


... After Bulk Planarity & Path Resistance Test Failure

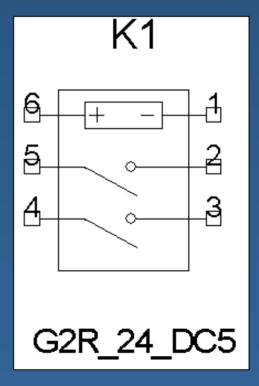
Check array display first. Dispersed planarity failure - often PC issue not equipment issue.

... After Bulk Planarity & Path Resistance Test Failure

Grouped planarity failure – check test equipment calibration.


... After Bulk Planarity 8. Path Resistance Test Failure (con't.)

1. Verify test file for correct specifications


2. Revisit cleanliness issues – bent probes, debris,

lint, etc.

Component related

4. Verify test equipment

... After Alignment Test Failure

Note: Alignment refers to probe tip location in relationship to pad. This is not a theta measurement.

- 1. Verify XY co-ordinates
- 2. Revisit cleanliness issues bent probes, debris, lint

... After Overdrive Leakage Test Failure

Note: 95% of ODL failures due to product failure NOT test protocol - exact opposite of other tests.

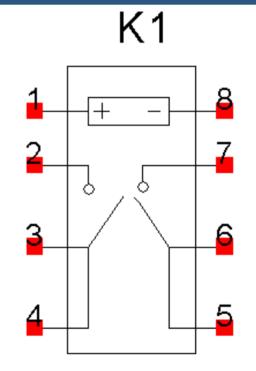
- 1. Verify test file for correct specifications
- 2. Inspect for bent probes and debris
- 3. Verify test equipment

... After Full Planarity & Path Resistance Test Failure

Note: These failures will generally be bussed probes that have been individually tested.

- 1. Verify test file for correct specifications
- 2. Revisit cleanliness issues
- 3. Verify test equipment

... After Wire Check Test Failure

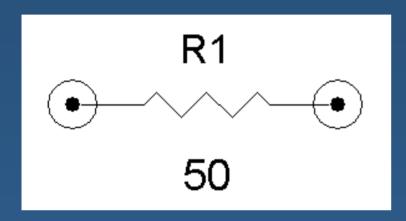

1. Verify orientation of array - CRITICAL

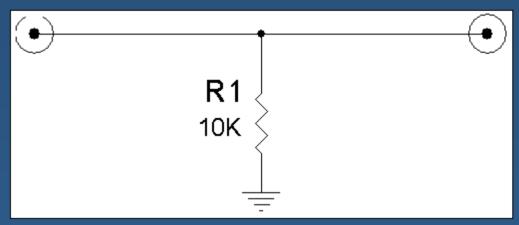
2. Verify pogo pin pad designation to XY

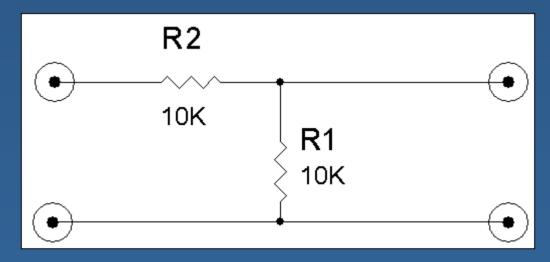
location

3. Inspect for bent probes and debris

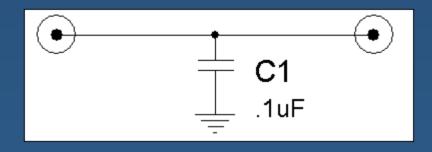
- 4. Component operation
- 5. Verify equipment

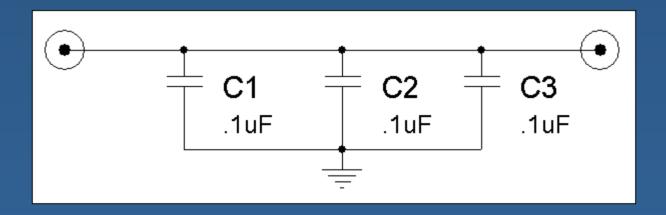



... After Component Test Failure


Note: Components can cause different failures (apparent and real) during different tests.

- 1. Verify test file for correct specifications
 - a. Component value correct
 - b. Component layout correct
 - c. Component type correct
- 2. Verify test equipment


... more on Component Test Failures



... more on Component Test Failures

Tricks of the Trade

- 1. Verify connection between probe card and tester
- 2. Use fizz test to prove out opens
- Try to verify and resolve failure before removing probe card from tester i.e. debris
- 4. Flag certain passing criteria as "failure" quick way to pinpoint crucial component verification.

FIZZ Test

Most Common Mistakes

- 1. Poor handling
- 2. Incorrect documentation
 - Different nomenclature between vendor and probe card customer
- 3. Misinterpretation of test results
- 4. Equipment set-up
- 5. Orientation of the array

Misinterpretation of Test Results

Edge	Trace	Pad	Pad #	Die #	Align	Planarity	Cres	Wire
		Nam e			Error			Check
0	975	HBD17	975	1	WR	-0.1	4.61	NR
1	861	HBD14	861	1	WR	-0.26	5.47	NR
2	886	DINVB1	886	1	WR	-0.2	4.66	NR
3	887	HBD28	887	1	WR	-0.41	5.07	NR
Edge	Trace	Pad	Pad #	Die #	Align	Planarity	Cres	Wire
		Nam e			Error			Check
0	975	HBD17	975	1	0.72	-0.1	4.61	3
1	861	HBD14	861	1	0.37	-0.26	5.47	2
2	886	DINVB1	886	1	0.22	-0.2	4.66	1

Misinterpretation of Test Results

Edge	Trace	Pad	Pad #	Die #	Align	Planarity	Cres	Wire
		Nam e			Error			Check
0	975	HBD17	975	1	0.46	N/F	O/R	3
1	861	HBD14	861	1	0.29	N/F	O/R	2
2	886	DINVB1	886	1	0.23	N/F	O/R	1
3	887	HBD28	887	1	0.19	N/F	O/R	0
Edge	Trace	Pad	Pad #	Die #	Align	Planarity	Cres	Wire
		Nam e			Error			Check
0	887	HBD17	887	1	0.13	-0.06	4.62	0
1	886	HBD14	886	1	0.38	-0.24	5.34	1
2	861	DINVB1	861	1	0.3	-0.19	4.66	2
3	975	HBD887	975	1	0.29	-0.41	5.13	3

Calibration

Note: Test results are only as good as calibration of equipment

- 1. Adhere to equipment manufacturer's calibration schedule
- 2. Run daily calibration of motherboard test platform to tester
- 3. Make OEM "calibration" procedure part of technician training

When and What to Test

		Bulk Planarity &	Overdrive		Full planarity &	Wire	
Card Type	Leakage	Path Resistance	Leakage	Alignment	path resistance	Check	Components
First							
Articles	X	X	X	X	X	X	X
Re-Orders		X					
Repaired							
Cards		X					
High							
Volume		X	X				
Intermittent							
Usage		X					

Conclusions

- 1. Good in-house metrology can keep probe cards in production and on-line
- 2. Preparation is the key to metrology that works for you not against you
- 3. Interpretation of data is as important as the data itself
- 4. It's the simple stuff that kills you