Extending Probe Card Life for Fine Pitch Probe Cards

Gene Humphrey International Test Solutions, Inc. June 10, 2002

Southwest Test Workshop

9-12 June 2002

Long Beach, CA USA

Material Considerations

- Relative Accumulation
 - Comparison of 5 Common Probe Materials
 - Effects of Probe Tip Roughness
- Effect of Cleaning Materials
 - Comparison of 4 Common Probe Materials
 - Comparison of 5 Common Cleaning Materials

Accumulation Study

- 5 Probe Cards
 - One each of ReW, W, BeCu, P, NTK
 - Each Card with 10 Probes of the Same Material
 - Same Build Configuration
 - Study Conducted in Production Environment
 - No Electrical Testing
 - One Touch per die
 - 3 mil Overdrive
 - Same Test Condition for All Cards
 - No Cleaning

Probe 1 Comparison

Comparison Probe 1

Probe 1 Comparison

Probe 2 Comparison

Probe 2 Comparison

Probe 2 Comparison

Probe 3 Comparison

Probe 3 Comparison

Probe 3 Comparison

Accumulation Conclusions

- Relative Accumulation
 - ReW and W Accumulate at nearly the same rate
 - BeCu and NTK Accumulate at nearly the same rate
 - P Accumulation Rate Least of All Materials Studied
 - Substantial Difference in the Accumulation on ReW and P

Effect of Roughness

- Does the Probe Roughness Effect Accumulation Rates?
 - One ReW Probe Card
 - 100 Touchdowns After Sanding Flat with 3µm Lapping Film
 - 100 Touchdowns After Sanding Flat with 0.5µm Lapping Film
 - No Electrical Testing

0.5 μm vs 3 μm

Probes sanded with 0.5µm AIO2 lapping film, 100TD

Probes sanded with $3\mu m$ AlO2 lapping film, 100TD

ReW Probes, same probes, same OD

Roughness Conclusion

 Appears That Roughness Does Effect the Rate of Accumulation of Material on the Probe Tips

Durability Comparison

 "An Extremely Abrasive Analysis" Troy Harnish and Bill Wenholz, SWTW 2001

The Evaluation Basics

- Identical and simple probe cards
 - One probe card designated for each cleaning material
 - Cantilever design (epoxy ring)
 - Probe metallurgy and target size (flat)
 - Tungsten (25um)
 - Rhenium Tungsten (25um)
 - Beryllium Copper (25um)
 - Palladium (25um)
- Cleaning products in wafer format
- Common probe card metrology analysis
- Z only cleaning motion with indexing & OD extremes

3µm-LF SEM Comparison

Baseline

100k Touchdowns

0.5µm Cushion Lapping Film

Baseline

100k Touchdowns

Sanding Debris

Tungsten - 75µ l

Rhenium Tungsten - 80µ 1

Tungsten Carbide SEM Comparison

Baseline

500k Touchdowns

Tungsten Carbide Photos

Tungsten

Beryllium Copper

Custom Ceramic SEM Comparison

Baseline

500k Touchdowns

Custom Ceramic Photos

Mushroom Effect

Probe Polish 99 SEM Comparison

Baseline

1 Million Touchdowns

Durability Conclusions

- ReW and W Most Durable
- P and BeCu Much Less Durable
- Tungsten Carbide and Ceramic Less Destructive Than Any Lapping Film
- Probe Polish Least Destructive

Reshaping Tests

- On Going Research
- Goals
 - Reshaping Materials for Each Common Probe Materials
 - Control the Shape
 - Cost Effective Option to Extend Probe Card Life

BEFORE/AFTER

W Probe, 6000 Touchdowns

"X" DIAMETER CHANGE

TUNGSTEN PROBE RESHAPE

"Y" DIAMETER CHANGE

TUNGSTEN PROBE RESHAPE

Reshaping Recipe

			Min		Contractory (1971)	and server 1	COLUMN TO ST	Courses 10	0.01	10.0		2.0		S.S. mark	St	Common California	
			Max		1.000	10.1	10.0	51.8	50.0	50.0	100	8.0	-				
		-	Overdrive		78.0	76.1	76.0	78.0	76.0	76.0		75.0	76.0				
			Pase .		25	25	25	25	25	25	26	25	NR				
			Fail		0	0	0.	0	0	0	0	0	NR				
			Not Found		0	Q.	0.	0.	0	D	0	0	NR.				
			Units		Ohms	MICTORIE	MICTITIS	METONS	Micronis-	MICROES	Nanoamps	Grams	Ohms	Microre	NKIDIS		
Eége	Trace	PasName	Parix	Die 0	Cfirs	Align Err X	Align Err Y	Hanarity	Tip Diam X	Tip Diam Y	Lookage	Gruen Force	When Check	Ref Coord X	Ref Coard Y	Remarks	
_	BH.	1	1	1	0.102	4.0	4.7	-22.7	36.8	29.9	4.3	4.8	NR	-13495.0	3340.0		
	AZ	2	2	1	1,288		-4.5	-13.4	18.3	24.5	5.0	3.2	NP	-13852.5	3345.D		
	87	3	3	1	1.556	. 7.7	7.0	6.4	420	34.0	8.2	T.1	NIR	-13800.0	3335.0	1	
	AB	4	4)	1	8.676	-4.5	4.0	-17.3	17.1	15.9	0.7	2.2	NB	-13609.0	3360.5		
	91	5	5	1	1.559	.4.3	-67	-15.4	123	26.9	2.6	23	MR	-14(94.5	3345.0		
	AB.	0	8	1	1.402	Run	Tip Cleaning	Recepte			TX	3.1	NR	-14300.0	3340.0		
	88	1	7	1	0.833	-						4.8	NR	-14450.0	3317.5		
_	815	8	8	1	1882	- Recip	eFiles	shape Recip		-		2.3	NR	-17719.0	-4B.5		
	A36	8	8	1	1.473							0.0	MR	-17719.0	-266.5		
_	B16	1.0	10	1	1.157		1960	in not					MR	-17719.0	-111.5		
-	A17	11	11	1	0.364	Gas	Mathed 0	JaanMataria	(GeavOD	CleanCycle	Chai	4.8	MP	-17719.0	+814.5		
	817	12	12	1	1.734	< Te	Reshape P	Yode Form	75	6000		.0.2	NR	-17719.0	-782.0		
-	414	15	12	1	8.047	- K.14	fischape f	hobs Polish	50	100		3.0	NET	-14803.0	-4019.5		
	824	14	14	1	8,249	-						57	NP	-145BF.U	-4039.5		
	649	10	10	1	6,110	- K					1	0.4	NEM NO	-14/91/0	-4120.0		
-	875	15	10	4	6.200	-					- 25	4.2	Parts AND	19105.0	4140.0		
-	0.36	10	60	1	8,100	- 5	and	Done	Hel	0		3.2	5.402	-10100.0	-4117.6		
-	417	10	10	1	1.000	-				-			ENG.	-10772.0	4148.0		
	B17	20	20		8.956	-4.0	10	-357	17.7	19.4	22.0	26	140	-13125.0	-4115.0		
-	871	51	24	1	1.071	28	14	14.4	103	10.1	8.2	10	harz	-10165.0	-912.5		
	AB	132	22	4	1-380		.77	.53.7	37.4	30 T	53	17	MAG	-10142.0	-519.5		
A Tank	Passalts &	Summery /							14								1

Reshaping Plate

Tip Cleaning Window

Probe Tip Cleaning			<u>?</u> ×
<u>O</u> verdrive:	75.0	Microns	•
<u>P</u> attern:	Tip Reshape	1	•
Cleaning Material:	Probe Form		•
<u>T</u> otal Travel:	0.0	Microns	
<u>S</u> egment Travel:	0.0	Microns	
Angle:	0.000	Degrees	
Cycles Requested:	6000		
Cycles Completed:	0		
Status:	Ready		
Sand	Done	<u>H</u> elp	

Conclusion

- The Cleaning Recipe Must be an Integral Part of the Overall Test Program
- Different Probe Materials Accumulate Debris at Different Rates
- Surface Roughness Effects Debris Accumulation

Conclusion

- Material Used in Cleaning Dramatically Effects Probe Card Life
- Reshaping Probes can Extend Probe Card Life

