A Precision High Speed Approach for 3D Probe Card Metrology

Raymond Kraft, Ph.D. Applied Precision, LLC

South West Test Workshop 10 June 2002 Long Beach, CA USA

Presentation Agenda

- Motivation
- New 3D Metrology Concept
- Benefits
- Summary

Motivation Ever increas simultaneous

- Ever increasing need to test more devices simultaneously
- Probe card pin counts and loads increasing
 - Advanced Technology Cards with 5,000 10,000 probes
- Accuracy
 - Increased loads impact structural deflection and degrade accuracy
 - Tighter probe pitch and smaller pads require higher accuracy
- Test Time
 - Need to keep test times acceptable
 - Minutes, not hours

- Electrical Planarity: Non-Bussed Probes
 - Scan chuck in Z
 - Fast planarity measurement (electrical switching)
 - Accurate

• Electrical Planarity of Bussed Probes

Each bussed probe individually driven to isolated contact

- Electrical Planarity of Bussed Probe Issues
 - Time consuming for advanced technology cards with large numbers of bussed probes
 - XY move and Z moves required for each bussed probe
 - Z moves can be time consuming to achieve desired accuracy
 - Isolated contact can accumulate dirt/debris
 - Issues with compatibility of probe pitch with isolated contact size

- Optical Probe Alignment Issues
 - Alignment at overtravel requires large number of touchdowns one for each field of view
 - Start/Stop motion between fields of view also time consuming

Motivation: Accuracy&Repeatability

- Performance affected by:
 - Stage accuracy/repeatability
 - Temperature induced issues
 - Deflection under load
 - Abbe Error

3D Metrology Concept

- 3D Optical Comparative Metrology (3D-OCM)
- Fully Optical Metrology
 - Colocate measurement standard and probes
 - Measure probe locations relative to NIST traceable measurement standard (fiducial marks)
 - Produced by photolithography process
 - Compute planarity and alignment from measurements
 - Multiple patents pending

3D-OCM: Concept Elements

10

3D-OCM: Example Probe Images

Cantilever

MicroSpring[™] Probe card courtesy of FormFactor

> **AppliedPrecision** Enabling the world's core technologies

11

3D-OCM: Benefits

- ACCURACY & REPEATABILITY
 - Measurement INDEPENDENT of stage accuracy
 - Virtually no Abbe error
 - Based on NIST traceable standard
 - Highly insensitive to temperature variation
 - Proprietary substrate design

3D-OCM: Benefits

Machine to machine correlation

- Afforded by Common NIST traceable standard
- Improved Gage R&R results

One-touch scan

- Continuous scan of ALL probes \Rightarrow planarity and alignment
 - No distinction between bussed and unbussed probes
- Reduced probe wear

3D-OCM: Benefits

• SPEED

- Fast continuous motion scan of ALL probes
 - Non-bussed and bussed
- Measure multiple probes at available image capture rate
- Example: @ 30 FPS
 - 2,000 probes in < 2 minutes
 - 10,000 probes in < 10 minutes
- Better than order of magnitude faster than current technology

Summary

- Wafer test roadmap demands faster, more accurate metrology
- 3D Optical Comparative Metrology offers significant advantages over current metrology for Advanced Probe Cards
 - Greater accuracy
 - Higher degree of repeatability and reproducibility
 - >1 order of magnitude improvement in speed

