Advances in Laser Micro-machining for Wafer Probing and Trimming

M.R.H. Knowles, A.I.Bell, G. Rutterford & A. Webb

Oxford Lasers June 10, 2002

Introduction to Laser Micro-machining
Laser micro-hole drilling for probe cards
Laser trimming of MEMS
Conclusions

Introduction to Laser Micro-machining

Laser Micro-machining - Ablation

Laser Ablation - material removal by a combination of evaporation and melt expulsion

Proportion of evaporation vs melt expulsion depends on laser parameters and material

Laser Beam
 Ejected material
 Deposited Ejected Material
 Recast material

Laser Micro-machining - Ablation

---- oxfordlasers

General Rule (with notable exceptions)

- Shorter wavelength removes less material
- Shorter pulse removes less material
- Less Material removed = higher precision
- Less material removed benefits from higher pulse rate

Volume of Material Removed

Wavelength

Pulse Duration

Laser Micro-machining

Holes in 1mm thick Steel

Optimum Laser Parameters Clean hole with no recast almost no debris

Non-Optimum Laser Parameters Significant recast, crown and debris

CVL & UV CVL Characteristics

Copper Vapour Laser

Laser type used in this presentation

---- oxfordlasers

Laser

Wavelength (nm) Power (W) Pulse Freq (kHz) Pulse duration (ns) Beam quality (xDL) *CVL* 511& 578 10 - 50 1 - 50 10 - 50 1 - 2 UV-CVL 255, 271 or 289 1 4 - 10 10 - 50 1 - 2

Integrate CVLs and solid state lasers into turnkey systems depending upon the application

Laser Micro-machining - Cutting

Fixed Beam XY Linear Axes Very High Accuracy Large Area Moderate velocity & acceleration Moving Beam XY Galvo Mirrors & Flat-field lens Moderate Accuracy Moderate Area Very high velocity & acceleration

Laser Micro-machining - Drilling

Percussion

Fixed Beam Hole size & Shape determined by beam Low Accuracy & Quality High speed Fixed Beam Hole size & Shape determined by Mask High Accuracy & Quality Moderate speed

Mask Imaging

Inherently precise

---- oxfordlasers

Laser Micro-machining - Drilling

CVL Micro-hole Drilling

Ø 100 µm in 1mm steel

Ø 50 μ m in 0.1mm stainless steel

Holes from 1 μ m diameter upwards

Ø 1 μ m in

Ø 5 μ m in 0.05 mm stainless steel

Oxford Lasers June 2002

11

Micro-hole Drilling

---- oxfordlasers

Through-holes

Polyimide

Polyimide

Blind-holes

Polyimide

Kapton on copper

Micro-hole Drilling/Micro-Cutting

---- oxfordlasers

Silicon

Steel

Polyimide

Diamond

Ceramic

Micro-machining

Micro-Milling

---- oxfordlasers

Copper

Etching

Copper on Kapton

Aluminium on Polymer

Laser Micro-machining - Materials

---- oxfordlasers

Alumina

Diamond

Silicon Nitride

Silicon

Steel

Silicon

Polyimide

Sapphire

Laser Micro-hole Drilling for Probe Cards

Laser Micro-hole Drilling for Probe Cards

Vertical probe cards require micro-holes to locate the probe wires.

Materials: silicon, alumina, silicon nitride, silicon carbide, Vespal

Choose high prf, pulsed visible laser for all except Vespal. For Vespal choose pulsed, high prf, deep-UV laser

Hole sizes : 20 - 100 µm diameter

Hole shapes : circular or elliptical, parallel or tapered

For circular holes choose dedicated trepanning head For elliptical holes choose air-bearing XY axes or galvo mirror system Parallel/taper depends upon laser power and focussing geometry

Typical examples:

Material	Thickness (mm)	Hole Dia (mm)	Drill time (s)
Alumina	0.64	0.120	15
Alumina	0.60	0.090	9
SiN	0.50	0.075	9
SiC	1.00	0.120	45
SiC	1.50	0.200	120
Vespal	0.50	0.025	0.05
Vespal	0.50	0.025	0.05

Laser Micro-hole Drilling for Probe Cards

All holes are trepanned so cutting speed is most relevant to estimate process speed scaling

Inherently precise

Laser Micro-hole Drilling for Probe Cards

Close Packed Arrays

---- oxfordlasers

Alumina 200 μm dia on 500 μm pitch through 640 μm thickness

System Requirements

Very High Accuracy Placement of Holes Typically +/- 1.5 µm over 12 inch wafer

Air bearing axes with linear motors and linear encoders True XY calibration using glass calibration plate CAD file conversion software

Laser Trimming of MEMS

Laser Trimming of MEMS

Laser Trimming of MEMS

---- oxfordlasers

Precision Mass Removal by cutting, etching or drilling

Trimming of MEMS such as accelerometers & angular rate sensors to "balance" device

Ablated volumes in the range of 1 - 1000 μ m³ per pulse

For silicon 1 μ m³ = 2.3 x10⁻¹⁵ Kg = 2.3 fg

But at pulse frequency of of 20kHz, removal rate in the range 46 pg - 46 ng per second

Laser Trimming of Other Devices

---- oxfordlasers

Photonic Devices - trimming of transmissive properties - adding Bragg gratings

Electronic

- trimming of resistive or capacitive properties

Wafer Processing Systems

---- oxfordlasers

Inherently precise

Active wafer-level test, repair and optimizationWafer dicing and micromachining

- Device trimming/balancing
- Automatic probing
- IC & MEMS devices
- Micro-hole drilling
- Micro-cutting & dicing

High throughputFull wafer test capability

Laser micro-machining enables probe card designers greater choice in materials and flexibility in hole geometry to pursue advanced devices

Combined wafer probing and laser trimming enables higher yield in MEMS and other devices