

Electrical and Mechanical Characterization of BladeRunner[™] Tips on Reflowed Eutectic Bumps

Dr. Rod Martens Sr. Principal Engineer FormFactor, Inc.

Scott Mitchell Program Manager Strategic Probe Development Team Texas Instruments, Inc.

Southwest Test Workshop June 9, 2002

Objective/Outline

Objective

 What are the important parameters for probing reflowed solder bumps with BladeRunner[™] tip MicroSpring[™] contacts?

<u>Outline</u>

- Nomenclature
- Experimental Setup and Procedure
- Basic Contact theory
- Probe Position Analysis
- 12K touchdown Experiment
- Bump Deformation Analysis
- Conclusion

Nomenclature

Experimental Setup - Single Spring Probing Schematic

Experimental Setup

Micro-ohmmeter F/δ fixture

Au Check plate

BladeRunner[™] tip MicroSpring[™] contact

Data Acquisition System

Test Wafer

Experimental Procedure

- Resistance
 - Keithley 580 Micro-ohmmeter
 - $100\mu\Omega$ resolution
 - Dry circuit conditions (20mV/100mA max)
- Force
 - 0.2g resolution
- Displacement
 - 0.001 mil resolution in Z
- Single spring probing performed in displacement control (2 mil overdrive past first touch)
- No cleaning operations performed

Fundamental Contact Resistance Model

The Holm equation is of the form:

Where R_c is contact resistance, ρ is the bulk material resistivity, H is the material hardness, σ_f is the film resistivity, and F is the normal force.

R. Holm, Electric Contacts, Theory and Application, (4th ed.) Berlin/New York: Springer 1967.

Force vs. Resistance – Film Free Case

- Data shown for clean gold contacting clean gold
- Log-Log slope ~-1/2, indicates metallic contact from first term of Holm equation
- Film resistance negligible

Force vs. Resistance - Film Case (solder)

Scrub Position Analysis

SEM

- Same spring used for both bumps.
- Same overtravel used for both bumps. (2 mils)
- Top touchdown was before the apex of the bump.
- Bottom touchdown was after the apex of the bump.

Case 1. First Touch Prior to Bump Apex

- Wiping action was limited
- Forces in 10-12g range
- Steep slope indicates contact is in film dominated regime (2nd term of Holm equation)

Case 2. First Touch After Bump Apex

- Wiping action maximized
- Forces in 1-3g range
- Slope transition indicates shift from film to metallic dominated contact (2nd to 1st term of Holm equation)

Case Comparison

- Same MicroSpring[™] contact
- Same overdrive (2 mil past first touch)
- Difference is scrub
 - Accelerates transition to metallic contact
 - Allows stable Cres at lower forces

Scrub Position Summary

For the same overtravel,

- First touch prior to apex:
 - Higher force
 - Less wipe
 - More volume displacement
 - Cres decrease by increasing amount of film area in contact
- First touch after apex:
 - Lower force
 - More wipe
 - Less volume displacement
 - Cres decrease by cutting through films to make metallic contact

Optimal "Targeting" for First Touch

Scrub Direction

Contact in this – area (past the apex) is optimal

Probed Bumps

Load/Cres over 12,000 Touchdowns

TEXAS INSTRUMENTS

Tip Before/After 12K Touchdowns

No cleaning performed.

Bump Deformation

- Diameter of bumps measured before and after probing
 - August NSX-95 bump inspection tool.
- Change in diameter of bump was less than resolution of the measurement tool production settings
 - 2.5µm/pixel

Conclusions

- An experimental setup has been designed to quickly evaluate new spring/wafer interactions
- Optimal probe placement has been defined as targeting first MicrospringTM contact past the apex of the reflowed bump
 - Minimizes force, resistance, and displaced volume
 - Maximizes scrub
- Proper targeting in conjunction with wiping on the reflowed bump produces lower contact resistance and reduces probe force
- 12K touchdowns were performed
 - Measured increase in bump diameter was less than the resolution of the measurement tool
 - Monitored Cres did not increase beyond experimental error

Acknowledgements

FormFactor

Susan Fan - Senior Engineer Tim Cooper – C4 Program Manager Carl Reynolds - Vice President, New Product Development

Texas Instruments

Gonzalo Amador – Senior Member Technical Staff Sabrena Ferguson - Process Engineering Technician

