

SWTW 2002

RF S-Parameter Wafer Probing – A Production Solution

Bill Knauer Keithley Instruments Tel: 440-498-3053 Email: knauer_bill@keithley.com

innovate • create • accelerate Agenda

- The Need for Fully Automated, On-Wafer S-Parameter Measurement
- Test System Requirements
- System Calibration / Diagnostics
- Device Layout Considerations / De-Embedding
- Considerations for Probe Selection
- Probe Cleaning
- Data Extraction Techniques

The Need for Fully Automated S-Parameter Measurement

•Statistical Model Generation

•Manufacturing SPC of high frequency device characteristic

Yield Analysis

FSK Demodulator

KEITHLEY

Need – Statistical Process Control

RF Product Performance Improves

DC is Necessary but not Sufficient.

Need – Yield Analysis

Overlay of DC and RF Wafer Maps Makes Systematic Defects Visible.

KEITHLEY A GREATER MEASURE OF CONFIDENCE

Three Main Aspect of Requirements

Vector Network Analyzer (VNA), Cable and Connector calibration

Probe Card Stability

Wafer Test Structures and De-embedding

innovate • create • accelerate

Parametric tester with DC and RF interconnect To a automatic prober

Probe Card And Prober

System interconnect showing cables, bias tees, probe card interconnect, and probe card adapter mounted in an automatic prober.

innovate • create • accelerate RF Test GUI

A 250

Global Data Entry

-	Global Data : rfcal1.	.gdf [Local – RW]	
<u>File Options</u> Version	<u>C</u> ontrol		<u>H</u> elp
Global Data Editor	Probe Card Editor	Pre-Ciefined Identifiers	
			_
Data Name	Туре	Value	
ManualWaferLoad	int	1	
rf_cal_verify_logging	int	1	
enable_chuck_control	int	1	-
			_
			-
			-
100	Assolution (Andre)	Dalata	ani l

KEITHLEY

2002

- Control Wafer Loading
- •Optimize Probe Contact
- Verify Contact Resistance
- Minimize Probe Wear
- •Set Control limits by technology
- Log all events and associate with data
- Enable Tester SPC

innovate • create • accelerate RF SETUP - VNA

- RF SETUP /opt/kiS600/dat/rfcal/rf_cal_file.rfi · 🗌
<u>F</u> ile <u>A</u> bout
VNA Signals Calibration Auto-Z Limits SOLT LRM
Measurement 512 Number of points to average 1e3 IF Band, Hz
Frequency Frequency Set Label freqName
Start, Hz Stop, Hz Number of Freq
Start, Hz Stop, Hz Number of Freq
Subset 1 1e8 1e9 2e9 3e9 4e9 5e9 6e9 7e9 8e9
Subset 2 10e9 15e9 20e9
Subset 3
KEITHLEY & GREATER MEASURE OF CONFIDENCE

RF SETUP - Signals

- RF SETUP /opt/kiS600/dat/rfcal/rf_cal_file.rfi				•		
<u>F</u> ile <u>A</u> bout	<u>F</u> ile <u>A</u> bout					
VNA Signal	s Calibra	tion Auto-Z I	.imits SOLT	LRM		
2 Signal Set	Number of	Signal Levels	Ŧ			
Label	Port1 At	tn Port1 Powe	er Port2 At	tn Port2	Power	
s1:	20	1	30	-7		
s2:	10	-10	10	- 0		

RF SETUP - Calibration

RF SETUP /opt/kiS600/dat/rfcal/rf_cal_file.rfi
<u>F</u> ile <u>A</u> bout
VNA Signals Calibration Auto-Z Limits SOLT LRM
\$KILOG/rfcal.log Cal Log File in \$KILOG
rf_card Probe Card Label
🖵 Use Manual Prober
🖵 Use Cal Kit
SOLT 🗖
Site_2 🗖
-Pin Pair 1
25 Port1 DC pin
26 Port2 DC Pin

innovate • create • accelerate RF SETUP— Auto-Z

RF SETUP /opt/kiS600/dat/rfcal/rf_cal_file.rfi · []					
<u>F</u> ile <u>A</u> bou	<u>F</u> ile <u>A</u> bout				
VNA Signa	VNA Signals Calibration Auto-Z Limits SOLT LRM				
Enable Auto-Z					
1	Pin pair used for AUTO-Z test				
16.0	Contact trigger value, Ohms				
auto_z	auto_z Subsite Name from WDU				
2	Subsite Index 🛓				
5.0	Increment step for a contact				
25.0	Additional Overdrive				
RFCALSUP	KULT Library				
rfcalsup_t	KULT Function				
190.0	Maximum Travel. PLEASE USE CAUTION WHEN SETTING!				

KEITHLEY A GREATER MEASURE OF CONFIDENCE

RF SETUP- Limits

RF SETUP /opt/kiS600/dat/rfcal/rf_cal_file.rfi 🔹 🗌			
<u>F</u> ile <u>A</u> bout			
VNA Signals Calibration Auto-Z Limits SOLT LRM			
Contact Test Limits			
	1e-6	Leakage on OPEN, Amp	
	60	Resistance on MATCH, Ohms	
	8.0	Resistance on SHORT, Ohms	
	16 Resistance on THRU, Ohms		
	-S-Param	umeter Verify Limits	
	- OPEN	SHORT	
1e-1 S11 0.01 S11			
1e-1 S12 0.01 S12			
1e-1 S21 0.01 S21			
	1e-1	S22 0.01 S22	-
	[<u></u>		

KEITHLEY

innovate • create • accelerate RF SETUP- SOLT

A GREATER MEASURE OF CONFIDENCE

	RF SETUP /opt/kiS600/dat/rfcal/rf_cal_file.rfi				
<u>E</u> ile <u>A</u> bou	<u>F</u> ile <u>A</u> bout				
VNA Signa	VNA Signals Calibration Auto-Z Limits SOLT LRM				
OPEN					
6.5e-15	C0, F				
0.4525e-3	Length, m				
LOAD					
0	Inductance, H				
50	Impedance, Ohm				
THRU					
0	Length, m				
50	Impedance, Ohm				
SHORT					
-4e-12	LO, H				
0.053e-3	Length, m				

KEITHLEY

Requirements - VNA Calibration

innovate • create • accelerate

- Calibration is required to correct for systematic errors in the VNA and cabling.
- The fixed probe spacing of a production probe card limits the choice error correction methods to SOLT (two port, 12 term error corrected).
- Automatic calibration is performed by inserting a calibration standard onto a silicon wafer.

A Calibration Substrate has gold test structures on alumina substrate.

VNA Calibration SOLT

SOUTHWEST TEST WORKSHO

Calibration Considerations

Calibration Frequency

- •With each probe card change (when test head docks)
- Periodic by time, DUT type or number of sites probed
- As part of needle cleaning and contact verification

Calibration Pass/Fail Criteria

- Dependent on user requirements (device size, frequency etc)
- Calibration Repeatability Expectations
- Critical factors are probe card docking and probe cleanliness

Frequency Response

S11 and S22 Open

Calibration Pass/Fail Criteria

S12 and S21 Thru

Frequency Response

Typical Pass/Fail Criteria for MOSFET S Parameter Testing

	OPEN	THRU
S11	0 ± 0.15 dB	< -50 dB
S12	< -50 dB	$0\pm0.10~dB$
S21	< -50 dB	$0\pm0.10~dB$
S22	0 ± 0.15 dB	< -50 dB

Requirements – Test Structures and De-Embedding

What Type of De-Embedding?

How Frequently?

	n+		
	n+)	n ⁺	
S	510 ₂		
S	<u>.</u> <u>Substrate</u>		

Technology Considerations?

Layout for De-Embedding

innovate • create • accelerate RF Probe Card

innovate • create • accelerate

Considerations for Probe Selection

- 50 Ohm impedance match G-S-G construction
- Mechanical Design for Fine Pitch Probing (fine point and steep pitch)
- Metallurgical match to probe pad requirements
- Balance Contact Force and Co-Planarity match to DC probes for mixed DC/RF probe card
- Durability and low cost

Available Probe Technologies

innovate • create • accelerate

Requirements – Probe Card Stability

Two types of contamination are most often observed

Small particulates which systematically build up over many hundreds or thousands touchdowns.

S11 OPEN cal before and after 5000 touchdowns

Large particulates which are generated on a random basis

KEITHLE

S11 OPEN cal before and after particle contamination

0.4

Probe Contamination Monitor

S11 measured during prober indexing
Deviation from 0dB plotted
Probe pattern:

KEITHLEY

Contamination Monitor Results

SPC of Probes Up S11 and S22 During a Test with 5000 Devices Measured On Two Sequential Wafer Lots

Real-Time Probe Cleaning, Re-Cal

- Measured Data or Probes Up Sxx Fails Limits.
- Probe Clean and Re-Test at Current or Adjacent Site.

- Probe Clean and Re-Test at Current or Adjacent Site Fails.
- Re-Clean and Re-Test Previously Good Site.

- Re-Clean and Re-Test Previously Good Site Fails.
- Stop Testing, Re-Load Calibration Wafer and Re-Cal.

KEITHLEY

RF Data Display

KEITHLEY RF DATA DISPLAY
<u>E</u> xit <u>H</u> el
ot: TEST6 Wafer: Count_1 Site: Site_5_x2 Device: MIM_CAP_D1 File: device.dat ot:
S-Parameters - S-Parameters - Sit - Sit - Sit - Smith - Linear X - Lines Style • Lines & Points • Lines & Points • Lines & Points • Lines & Points • Lines & Points
Plot and De-Embed Controls
auto — lot — Abort Hold — B&W Print — Save Plot Exit
auto none KEITHLEY
KEITHLEY A GREATER MEASURE OF CONFIDENCE

NEI I HLU

innovate • create • accelerate

Data Browser - Ft

A GREATER MEASURE OF CONFIDENCE

KEITHLEY

innovate • create • accelerate

Data Browser - FMAX

A GREATER MEASURE OF CONFIDENCE

KEITHLEY

Data Browser - Capacitance

Data showing 3 measured capacitors

innovate • create • accelerate

Data Browser – DC; IC vs. VBE

*** -

SOUTHWEST TEST WORKSHO

KEITHLEY A GREATER MEASURE OF CONFIDENCE

innovate • create • accelerate Conclusions

- The need for large amounts of s-parameter data for statistical modeling and process control is becoming increasingly significant.
- The considerations for a solution and the effectiveness of that solution have been demonstrated.
- Using this approach enables automated yield optimization tools to support products with DC to Broadband performance parameters.

Acknowledgements

- Praful Madhani Texas Instruments
- Tim Blythe Texas Instruments
- Johnny Ai Texas Instruments
- Bill Larson Honeywell
- Paul Green Honeywell
- Carl Scharrer Keithley Instruments
- Alex Pronin Keithley Instruments
- David Rose Keithley Instruments

