Advantest's PhotoFingerTM Probecard

By

David Yu, Hubert Yu Zhou, Bob Aldaz, Keith Lee, Jeff Raimo Custom Design Engineering Advantest America, Inc.

Agenda

- I. PhotoFinger^(TM) probecard development
- II. Probecard structure and stack-up
- III. Contactor fabrication
- IV. Carrier fabrication
- V. Assembling
- VI. Test data
- VII. Vertical probing
- VIII. Future work and roadmap

I. PhotoFingerTM probecard development

- Employs Photolithographic MEMS-based technologies
- Allows High Parallelism and High Speed of Test
- Applicable for Periphery and Array Layouts
- Modular Scalability and Reparability

II. PhotoFinger[™] probecard structure and stack-up

Front (contactor) Side view

Back Side view

II. PhotoFinger[™] probecard structure and stack-up (cont.)

- 1. Metal contactor
- 2. Silicon carrier
- 3. Multilayer routing ceramic
- 4. Conductive polymer
- 5. PCB
- 6. Mounting frame

III. Contactor fabrication

- 1. Pattern generated by photolithographic processes
- 2. Any 2D geometry design
- 3. Electroplating produces finite thickness and fine metal crystal structure
- 4. Low cost fabrication

Contactor geometry

Contactor backside

III. Contactor fabrication (cont.)

Photo-defined contactor fabrication

III. Contactor fabrication (cont.)

1. Probe force:	2-3gram/pad
2. Overdrive:	30-60 µm
3. Thickness:	30-50 µm
4. Temperature:	~ 100°C
5. Electric current capability:	900mA

6. Backside spring interconnects to ceramic

IV. Carrier fabrication

ADVANTE

- 1. A Si substrate holding contactors in place
- 2. CTE matching with the wafer under test
- 3. Photolithographically defined hole positions
- 4. DRIE (Deep Reactive Ion Etching) removes material to form holes
- 5. Thermal growth of Si oxide film on carrier's surface as electrical insulator
- 6. Additional layer of Si oxide film by chemical vapor deposition
- 7. Multilayers of Si substrate through fusion bonding

IV. Carrier fabrication (cont.)

Holes generated by DRIE

Si oxide film as insulator

ADVANTEST

Contactor population

V. Assembling

Contactor pick and place equipment

V. Assembling (cont.)

Micro-assembly set-up

V. Assembling (cont.)

Contactor is picked by micro-gripper

V. Assembling (cont.)

Adhesive dispensing system

VI. Test data

Contact resistance in 100K touchdown on Al film

TDR Measurement

Rise time: 545 ps (10%-90%) for lines without contactors and 820 ps with contactors

VII. Vertical probing

- Photo-defined spring contactor
 Bump array probing applications
 Same probability stack up
- 3. Same probecard stack-up

50µm OT

Probing marks on the same flat top bump for comparison at different over travels

(Bump diameter:130µm)

Vertical contactor

70µm OT

VII. Vertical probing (cont.)

Contact resistance before and after current flow

VIII. Future work and roadmap

- 1. Contactor Profiles for Bump Array Applications
- 2. Integrated High Performance
- 3. Low Cost Space Transformer
- 4. Implement High Volume Manufacturing

VIII. Future work and roadmap (cont.)

ADVANTEST

Acknowledgements

Special thanks to Dr. Gert Hohenwarter for his advice and contributions to the Photofinger^(TM) project

