Introduction to Wafer Level Burn-In

William R. Mann
General Chairman
Southwest Test Workshop
Outline

- Conventional Burn In and Problems
- Wafer Level BI Driving Factors
- Initial Die Level BI
- Technical Challenges
- Viable Wafer Level BI Approaches
- Conclusion
Conventional Burn In

- Used for years to reduce “infant mortalities”
- Mil STD 38510 & Mil STD 883E, Method 1015.9
- Typically 125% Vcc, 125°C, 48 to 168 hours
- Either DC bias or full dynamic operation
- Voltage and temperature life acceleration follow the Arrhenius model:
 - Temperature and voltage independently and exponentially accelerate failure modes
- Burn In is followed by full final test
Various Burn In & Test Flows

1. TEST → BURN IN → TEST
2. Mini-TEST → BURN IN → TEST
3. No Pre-Test → BURN IN → TEST → Specific F/A
Conventional BI Problems

- Burn In ovens, floor space, and power
- Twice as many testers!
- Increased cycle time and chip handling
- A lot of additional direct labor (cost)
- Usually new tooling for each device
 - Burn In boards and sockets
 - Limits the production ramp up
- Customers insensitive to added costs

They just want “better reliability”
WLBI Driving Factors

• Cost reduction
 – Burn In was viewed as temporary
 – “We’ll only BI until the new process is stable”
 – When it became stable, another new process!
 – Move it closer to the source of the problem
 – Do it cheaper (maybe full wafer BI and test?)

• Known Good Die
 – Customers wanted to buy bare die
 – Needed same reliability as packaged chips
 – Often used in Multi Chip Modules
Multi Chip Modules
MCM Yields Vs Die Quality

![Graph showing MCM Yields Vs Die Quality with different MCM Yields represented by lines.]
Initial Die Level Burn In

- Had to address the Known Good Die business
- Used temporary die carriers for BI and test
- Higher cost, but met the customer’s demands
Technical Challenges

• WLBI took many years and teams of companies to provide viable solutions
• Thermal management due to die density
• Die isolation
 – Density caused issues for stimulus isolation
 – Switching power versus current limit
• Pitch, pad size, and circuitry routing
 – Dealing with small die pitch or I/O fan out
 – Temperature Coefficient of Expansion mismatch
• Wafer to contactor alignment
Large Japan IC Supplier

- Implemented WLBI for die shipments
- Large scale production for the last 3 years
- Three part types in processes down to .17um
- WLBI is added during normal wafer test
- Regular ATE used (often parallel testing)
- Eight additional seconds at 85 degrees C
- Stress done at 136% of rated voltage
Samsung and Wentworth

- Use a Wentworth Cobra Card with needles for the stimulus channels only
- Samsung uses special ATE
 - Low cost hot chuck probers
 - Low cost stimulus electronics
 - Functional testing is totally separate
- 64 Meg DRAMS, 64 devices in parallel
- 4 touchdowns per wafer
- 15 minutes per wafer, 90 degrees C
Motorola, W. L. Gore, and TEL

- Joint development program
- 3 M provided wafer “Inferno” interface board
- Contactor material was GoreMate elastomer
- TEL supplied BI equipment and automation
- Location was Motorola BAT I, Austin, TX
- Inferno board with tight line and space pitch requirements was very expensive
- GoreMate was consumable and expensive (Gore has left that business; Moto looking)
Motorola, W. L. Gore and TEL

Inferno™ IC Board

GoreMate™ Contactor

Diameter about 50um
Pitch about 100um
Motorola Sacrificial Metal

• Driven by Known Good Die requirements
• Sacrificial metal layer added to wafer
• Parallel bussing of die into clusters
• Burn In I/O contacts are spread out
 – 5” wafers: 4 clusters; I/Os on wafer perimeter
 – 8” wafers: 14 clusters; I/Os on top of clusters
• BI system to wafer I/Os via pogo pins
• DFT features provide dynamic stimulus
5 Inch and 8 Inch Die Clusters
5 Inch And 8 Inch BI Chambers
Motorola Accomplishments

• 5 Inch development began in 1992
• Full production by 1995
• 48 wafers per system
• Over 2 million KGD deliveries

• 8 Inch development began in 1997
• 28 wafers per system
• Production system built in 1999 (Delta V)
Panasonic

- Used for internal memory die requirements
- .5 M devices/year (program began in 1993)
- 15 different part numbers
- Initial full wafer test at 75 C
- 125 C Burn In, typically 2-20 hours
- Controller with 3 ovens per system
- 9 wafers per oven
- TSP membrane probe contactor for wafer interface, vacuum held in place
Panasonic TSP Probe

Connect to PCB
Conductive Rubber
Polyimide Membrane with Bumps

Si Wafer Solder Bumps
Panasonic

Burn-in Tester
Aehr Test “FOX” BI System

- Partial DARPA funding
- NHK Spring, Yokohama, Japan, (Micro-pogos)
- Electroglas for wafer alignment
- Wafer alignment to the BI PWB is done off-line and Wafer/PWB cassettes are held together with air pressure
- FOX equipment provides stimulus and test electronics, thermal management, DUT power
- Currently being used with Laser Diodes and being evaluated by memory manufacturers
FOX Wafer Alignment/Loading and WaferPak Storage
FOX Wafer BI and Test System
Conclusion

• Wafer Level Burn In is happening
• Multiple vendors provide equipments
• Numerous IC suppliers are involved
• Primarily driven by customer demands for bare die and Known Good Die
• With specialized equipments, processes and designs, it’s a costly operation
• Cost effectiveness and viability of WLBI totally replacing device BI are still TBD
• But WLBI is definitely moving forward!
WLBI Is Not For The Timid

• May require design changes and DFT/DFBI
• May require extra fabrication processing
• Expensive to replace depreciated BI ovens
• Burn In itself is becoming questionable
 – New short channel technologies
 – Can’t handle higher voltages acceleration
 – High leakage increase further with temperature
• You may be tossing out or burning up some good parts, shipping “walking wounded,” and/or still passing infant mortalities