Solutions to Technical Challenges for WLBI Steve Steps

Major Technical Challenges

- "Only" three major challenges
 - Thermal
 - Mechanical
 - Electrical

FULL WAFER CONTACT

 Adding heat or usually removing heat in the order of hundreds of watts

FOX TH

Thermal Chuck

- Uniform wafer temperature
 - Independent of yield
 - up to 150 C
- Dissipates high power per wafer
- Simple, air cooled design

Major Thermal Challenges

 Adding heat or usually removing heat in the order of hundreds of watts

Maintaining constant temperature across wafer

Thermal Chuck

Cosmos/Flow 4.1

Chuck With Optimizing Heaters

Major Thermal Challenges (cont.)

- Maintaining constant temperature across wafer
- Adding heat or usually removing heat in the order of hundreds of watts
- Coefficient of thermal expansion mis-match
 - 8" Si wafer edges expand from wafer center by over 50 microns from 25 to 150 degrees C.
 - PC board will expand about 250 microns over same range.

Interconnect Substrate

- Functions like a PC board
- CTE matched with wafer
- Contactor also
 CTE matched to
 wafer

Mechanical Challenges

Aligning wafer to contactor

WaferPak[™] Alignment Station

- Loads and unloads wafers between
 WaferPak and cassette
- Aligns the wafer to the probe/contactor using both upward and downward cameras

Mechanical Challenges (cont.)

Aligning wafer to contactor

Cost effective

WaferPak[™] Modular Components

- Cartridge based solution simplifies hardware
- Loaded WaferPak is like a Burn In Board
- One Alignment
 Station per customer
 site versus per wafer

Mechanical Challenges (cont.)

- Aligning wafer to contactor
- Cost effective design
- High contact pressures
 - 8" SDRAM wafer with 50 pads/die, 500 die requires 25,000 pin contactor
 - At 10 grams per pin about 250 kg required
 - Maintain planarity to microns at these forces

Thermal Chuck Flatness Test Results

- Thermal chuck analyzed and designed to provide a very flat surface in contact with the wafer
- Used Cosmos Finite
 Element Analysis tools

Mechanical Challenges (cont.)

- Aligning wafer to contactor
- Cost effective design
- High contact pressures
 - 8" SDRAM wafer with 50 pads/die, 500 die requires 25,000 pin contactor
 - At 10 grams per pin about 250 kg required
 - Maintain planarity to microns at these forces
- How to generate and control such high forces

Contactor Force Control

Pressure based versus Vacuum based

- Not limited to one atmosphere
- More precise, uniform control of force
- Any leaks drive away contamination
- Can control location of force
- Probe to force versus to position
 - Required for most contactor technologies
 - Compensates for non-planarity

Full wafer contact produces on-axis forces

Mechanical Challenges (cont.)

- Aligning wafer to contactor
- Cost effective design
- High contact pressures
 - 8" SDRAM wafer with 50 pads/die, 500 die requires 25,000 pin contactor
 - At 10 grams per pin about 250 kg required
 - Maintain planarity to microns at these forces
- How to generate and control such high forces
- Best contactor varies per application

Contactor Choices

- Highly modular system supports multiple contactor technologies for Au, Al, Cu, UBM or solder balls
- Consumable Sheet
 - Lower NRE
- Micro pogo spring
 - High touchdown life
 - Great for relocated pads
- Ultra fine pitch

Sheet Based Z-axis Contactor

- Available in single-use or many-use sheets
- Interconnect board precisely aligned to wafer
- If sheet pattern is regular, then sheet position can be random
- If sheet is patterned, then must be aligned

Micro Pogo Spring Contactor

- High touchdown life
- High compliance
- Works with most pad metallurgies
- Multiple pitches available

Micro Pogo Spring Close-up

NanoSpring™ Contactor

Contactor Array 80 micron pads

Major Electrical Challenges

- How to deal with 25,000 or more signal lines
- Cannot remove bad die
 - How to deal with signal line shorts
 - How to deal with die power shorts

System Electronics

Leverage experience in parallel test design

- Signal lines and data lines are paralleled to vastly reduce total interconnect count between wafer and system electronics
- Individual die power lines prevent shorted die from interfering with good die
 - Capability to control & monitor power on individual die basis

Is Full Wafer Contact really possible?

SDRAM Wafer Map

Does It Really Work?

Is Full Wafer Contact really possible?

Is the contact reliable?

Per Touchdown Resistance

Does It Really Work?

- Is Full Wafer Contact really possible?
- Is the contact reliable?
- Can it scale?
 - Across varying wafer CTE?
 - Across varying wafer sizes?
 - Across nearly 3 orders of magnitude in force?

Laser Diode Burn-In

Current per VCSEL

Full Wafer Burn & Test Status

- Took longer than expected
- Many technical barriers
- Has been demonstrated across
 - Wafer sizes from 2" to 8" (300mm shortly)
 - Different wafer types (CTE)
 - SDRAMs to VCSELs (Laser Diode)
 - Different pad metallurgies
 - Widely varying contactor technologies

Full Wafer Burn & Test Has Arrived

