Full Wafer Contact Repeatability and Reliability

2003 SouthWest Test Workshop June 1-4, 2003

Steve Steps Scott Lindsey Aehr Test Systems

Agenda

- Full Wafer Contact Challenges
- Contact Pin Durability
- Full Wafer Contact Pin Reliability/Repeatability
- Full Wafer Contact Resistance Measurements
- Conclusions

Major Technical Challenges

- "Only" three major challenges
 - Thermal
 - Mechanical
 - Electrical

Mechanical Challenges (cont.)

- Aligning wafer to contactor
- Cost effective design
- High contact pressures
 - 8" SDRAM wafer with 50 pads/die, 500 die requires 25,000 pin contactor
 - At 10 grams per pin about 250 kg required
 - Maintain planarity to microns at these forces

Thermal Chuck Flatness Test Results

- Thermal chuck analyzed and designed to provide a very flat surface in contact with the wafer
- Used Finite Element Analysis tools

Mechanical Challenges (cont.)

- Aligning wafer to contactor
- Cost effective design
- High contact pressures
 - 8" SDRAM wafer with 50 pads/die, 500 die requires 25,000 pin contactor
 - At 10 grams per pin about 250 kg required
 - Maintain planarity to microns at these forces
- How to generate and control such high forces

Contactor Force Control

- Pressure based versus Vacuum based
 - Not limited to one atmosphere
 - More precise, uniform control of force
 - Any leaks drive away contamination
 - Can control location of force
- Probe to force versus to position
 - Required for most contactor technologies
 - Compensates for non-planarity

Full wafer contact produces on-axis forces

Mechanical Challenges (cont.)

- Aligning wafer to contactor
- Cost effective design
- High contact pressures
 - 8" SDRAM wafer with 50 pads/die, 500 die requires 25,000 pin contactor
 - At 10 grams per pin about 250 kg required
 - Maintain planarity to microns at these forces
- How to generate and control such high forces
- Best contactor varies per application

Full-Wafer Contact Technologies

- Micro-spring contactors
 - 300 mm capable
 - > 25,000 contacts per wafer
 - Up to a million uses for test
 - Solder bumps or wirebond pads
 - Operates from 25°C to 150°C
- Nano-spring contactors
 - MEMS-based leading edge technology
 - Capable of contacting fine pad pitches (< 60 microns)

Micro Spring Contactor

- High touchdown life
- High compliance
- Works with most pad metallurgies
- Multiple pitches available

Micro Spring Close-up (750u Pitch)

Full Wafer Contactor

Micro Spring Close-up (200u Pitch)

Probe Marks

Nano Spring Contactor

Contactor Array 80 micron pads

Micro Spring Durability

Durability n. The state or quality of being durable; the power of uninterrupted or long continuance in any condition; the power of resisting agents or influences which tend to cause changes, decay, or dissolution; lastingness.

-- Websters

One Million Touchdowns

300,000 Touchdowns

Micro Spring Before and After

Pin Tip before and

after 1 million touchdowns

Reliability and Repeatability Reliability n. The state or quality of being reliable.

Reliable a. Suitable or fit to be relied on; worthy of dependence or reliance; trustworthy.

Repeating a. Doing the same thing over again; accomplishing a given result many times in succession...

Contact Resistance Test Setup

Loop Resistance Histogram

Vcc to Gnd Pin

Full Wafer Contact Uniformity

Conclusion

- Full wafer contact is practical today
- Full wafer contact mechanisms exist which are very durable -- exceeding 1,000,000 touchdowns
- Full wafer contact can be vary reliable and repeatable

