

M E M G E N Vertical Micro-probe Design Based on the EFABTM Micro-Fabrication Process

Chris Bang and Nelsimar Vandelli 06/01/2003

EFABTM Micro-Fabrication Process

- Micro-fabrication process based on multi-layer electro-deposition of metals using proprietary selective deposition techniques
 - Capable of producing arbitrary 3-D shapes with no limitation in the number of layers
 - Capable of incorporating 3-D geometrical effects to improve device functionality and performance
 - Capable of generating devices directly from 3-D CAD models

EFABTM Design Flow

3-D CAD model

3–D Micro–devices

EFABTM Process Flow

Instant Mask™

- Conformable insulating material patterned with apertures and electrode
- Photolithographic processing performed completely separate from the device building process creating improving speed, efficiency, and cost-effectiveness

Step 1: Instant MaskingTM

- Instant Mask[™] mated with substrate inside tank containing electro-deposition bath for 1st material
- Application of current selectively deposits first material within regions defined by patterned insulator

Step 2: Blanket Electro-Deposition

- After cleaning, substrate with 1st material transferred to second deposition tank containing electrodeposition bath for 2nd material
- Application of current deposits 2nd material over 1st material and substrate

Blanket Electro-deposition

Step 3: Planarization

- Substrate with 1st and 2nd materials transferred to planarization station for mechanical or chemicalmechanical polishing
- Establish precise vertical (Z) dimensions

M

3-D Device Pre-Release Etch

- Instant Masking[™], blanket electro-deposition and planarization repeated for all layers in device
- Layers registered via machine vision and aligned with respect to the substrate to provide for nonaccumulating layer registration

M

3-D Device Pre Release Etch

3-D Device Post-Release Etch

- Sacrificial material removed by chemical etching
- Etching selectivity: >500:1
- Etching rates: theoretically 100s μm/h

3-D Device Post Release Etch

sacrificial material removed

Process Specifications

- Layer thickness:
 - Currently 2–10 μm; potential for 1–15 μm dimensional tolerance of +/- 0.3 μm non– accumulating; potential for +/- 0.1 μm
- Layer-to-layer registration:
 - Currently +/- 1.5 μm non-accumulating; potential for +/- 0.5 μm
- Minimum feature size: line width and space
 - Currently 20 μm; potential for 5–10 μm
- Substrate sizes:
 - Prototyping: 21 mm
 - Volume: 100 mm Q3 2003
 - Volume: 200 mm coming 2004

EFABTM Structural Materials

	Nickel (Ni)	Silver (Ag)		
Chemical composition	> 99.5% Ni			
Modulus of elasticity (GPa)	150-200			
Poisson's ratio	0.31			
Yield Strength (MPa)	> 800			
Tensile Strength (MPa)	> 800			
Stress gradient (MPa/µm)	< 60			
Fatigue life (s)	infinite @ < 100 MPa	not yet		
Inter-layer adhesion (shear)	> 200 MPa	characterized		
Thermal expansion coefficient (10 ⁶ /K)	13.4			
Thermal conductivity (W/m.K)	90			
Heat capacity (J/kg.K)	444			
Electrical resistivity (Ω.m)	6.84 x 10 ⁻⁸			
Inter-layer contact resistance (Ω)	< 5 μΩ (10 ⁴ μm ²)			
Values in bold font have been measured. Values in regular font				

MEMGEN

are estimates. 12 - June 1, 2003

	Alumina	Nickel (Ni)
Size Prototyping production	19-mm diameter 200-mm diameter	21-mm diameter 200-mm diameter
Chemical composition	99.7 % Al ₂ O ₃	100% Ni
Modulus of elasticity (GPa)	370	206
Poisson's ratio	0.2	0.31
Thermal expansion coefficient (10 ⁶ /K)	6.70 @ 20 ⁰ C	13.4 @ 20 ⁰ C
Thermal conductivity (W/m.K)	34.7	90
Heat capacity (J/kg.K)	not available	444
Electrical resistivity (Ω.m)	1.00 x 10 ¹⁴	6.84 x 10 ⁻⁸
Dielectric constant	9.9	not applicable

MEMGEN

Examples of Arbitrary 3–D Shapes

- Small footprints and small pitch for large, customized micro-probe array patterns on custom substrates
- Highly functional mechanical/electrical designs to allow optimal contact force, contact resistance and current carrying capacity
- Tight dimensional tolerances to compensate for topology differences across wafer and increase fatigue life
- Higher performance at high-frequency operation due to shorter, less inductive probes

Vertical Micro–Probe Designs: Coil Spring

Design Variation	Probe pitch	Thickness of bending member	Spring outer diameter	Total Spring Height
Coil 1	100 μm	16 μm coil	80 μm	440 μm
Coil 2	100 μm	12 μm coil	80 μm	400 μm

CAD model

Micro-probes

Mechanical Load-deflection Analysis: Coil Spring 1

E N

EMG

M

Mechanical Load-deflection Analysis: Coil Spring 2

E N

м

E

MG

Vertical Micro–Probe Designs: Bellows

Design Variation	Probe pitch	Thickness of bending member	Spring outer diameter	Total Spring Height
Bellows 1	100 μm	4 μm plate	80 µm	variable
Bellows 2	100 μm	6 μm plate	90 μm	variable

CAD model

Mechanical Load-deflection Analysis: Bellows Design 1

Mechanical Load-deflection Analysis: Bellows Design 2

Vertical Micro-Probe DC Current Carrying Capacity Analysis

- Cross sectional area of most envisioned probe bodies will probably be 5-40 μm x 5-40 μm
- Current densities as low as 2 $mA/\mu m^2$ for 250 mA
- Local heating or "super temperature" at the point of contact
- 300 μm of assumed path length
- No heat sinks or convective effects
- Super temperature estimates based on literature
- Temperature increase of 36°C and directly proportional to path length

Conclusions

- Micro-fabrication process based on multi-layer electro-deposition of metals and capable of producing arbitrary 3-D shapes to improve device functionality and performance
- Initial design concepts investigate and validated through FEA simulations indicating feasibility of load– deflection behavior and DC current carrying capacity
- Initial designs fabricated and awaiting characterization
- Future work:
 - Characterize coil spring devices
 - Fabricate and characterize bellows design
 - Explore new designs

