International SEMATECH Wafer Probe Council

"Vertical Probing Experiences"

Fred Taber IBM Microelectronics Probe Council General Chair Gavin Gibson Infineon Technologies AG Probe Council Topics Chair

Outline

Probe Council Overview What is 'Vertical' Probe Technology Member Company Experiences Key Challenges Wrap-up

Probe Council Overview: Mission

- International SEMATECH Mission
 - The members of International SEMATECH cooperatively set global industry direction and accelerate technology solutions in infrastructure, lithography, materials, and manufacturing to ensure a strong and vibrant semiconductor industry.

Probe Council Mission

 Provide the means to improve member company technology in wafer probing technology & methods by sharing best practices, employing benchmarking techniques, observing member company operations and guiding the supplier community.

June 3, 2003

Probe Council Overview: Roles

- Custom Funded Project
 - SEMATECH: Legal, Technical & Administrative Support
 - Members: Technical Data & Information, Know-how & Direction.....and Dues

Probe Council Overview: Members

Vertical Probe Technology: Definition

- "Vertical probes.....deliver a tangential force at the top of solder pads....."
 – From ref. 1: <u>Area Array Interconnect Handbook</u>
- Alternatively:

 Electrical path and mechanical structure is essentially vertical from the contact with the chip I/O to the interface with the Spacetransformer

Your Definition?

Experiences: Data Sources

- Member Company Topic Presentations
- Special Vertical Probe Survey for SWTW

		1	2	3
	Type/Technology			
	Manufacturer			
Probe Card	Product Name			
	Product Type			
Application	І/О Туре			
	1st			
Leadtime	Subsequent			
	Minimum			
I/O Count	Maximum		r	
	Pitch			
I/O Layout	Туре	<u> </u>		<u> </u>
Typ. Lifetime	# Touchdowns	Ť	, r	T
	Frequency			
Cleaning	Technique			
	In-house		1	
Repair	Supplier	<u>u</u>	. ב	
	Why?		ta	
	2nd Sourcing	H	Å	D
	Required (Y/ N) / If Yes			
Selection	name Supplier			
	Туре			
Spacetransformer	Sourcing			
	Strengths			
Other	Weaknesses			

June 3, 2003

Experiences: Probe Technologies

- Buckling Beam & Hybrid Buckling Beam
 - Wire Through Guide Plates
 - Sourced From
 - Feinmetall (ViProbe®)

- IBM (COBRA)
- Int'l Contact Tech. (VCT)
- K & S (CobraProbe™)
- MicroProbe (Apollo™)
- Wentworth Labs (COBRA®)

Experiences: Probe Technologies

- Membrane.....MEMS
 - Photo-lithographically Defined; Metallurgy on Polyimide Film or Silicon
 - Sourced From
 - Cascade Microtech (Pyramid Probe™)

Courtesy of Cascade Microtech

Courtesy of SCS Hightech

Illustration Courtesy of SWTW/IBM (ref. 2)

SCS Hightech (MEMS VPC)

Experiences: Probe Technologies

- Hybrid Cantilever
 - Cantilever w. Wire Through Guide Plates
 - Sourced From
 - K&S (VertaProbe™)

Illustration Courtesy of Motorola

Experiences: Probe Technologies

- Spring
 - Spring Probe Through Guide Plates
 - Sourced From

 JEM (VSC Vertical Spring Contact)

- Wire Bonded to a Substrate & Formed; Tip Geometry
 - Sourced From
 - Formfactor (MicroSpring™)

June 3, 2003

Experiences: Applications

Buckling Beam

	l/O's		
Products	Metallurgy Pitch (µm)	Config. #	
Discrete IC's, power, ASICs, µprocessors, µcontrollers, RF, Mixed Signal, Chip Sets, Test Chip	PbSn Bump 160 - 500	Area Array 5 - ~5K	
µcontrollers, DRAM, Smart Cards, Flash (emb), Test Chip	Al Pad 80 - 250	Peripheral / Inline 32 - ~5K	

Experiences: Applications

Membrane.....MEMS

	l/O's		
Products	Metallurgy Pitch (µm)	Config. #	
ASICs, µprocessors, RF	PbSn Bump 200 – 225	Area Array ~25 - ~3K	
Mixed Signal, RF	Al Pad 80	Peripheral / Inline 40 - >300	

Experiences: Applications

Hybrid Cantilever

	l/O's		
Products	Metallurgy Pitch (um)	Config. #	
		<u>π</u>	
ASICe ucontrollere	PbSn Bump	Area Array	
Ασίος, μεσημομείς	200 - 250	400 - 800	
Logic Chin Sate	Al Pad	Staggered	
Logic Chip Sets	35/50	100 - 300	

Experiences: Applications

Spring

Products		l/O's		
		Metallurgy Pitch (µm)	Config. #	
ASICs, _k	uprocessors, Chip Sets	PbSn Bump 180 - 225	Area Array 800 - 3100	
Flash		Al Pad 100	Inline 20x – 100x	

Experiences: Pad damage v. Technology

Experiences: Maintenance

Buckling Beam

Motollurgy	Cleaning		Popoir	Lifotimo	
Metallurgy	Frequency	Method	керап	LIICUIIIC	
PbSn	50 - 2000	Brush, Abrasive Pad, Gel Pad	Some In- house	100K – 1M	
Al Pad	200 - 1000	Brush, Abrasive Pad, Gel Pad	Some In- house		

Experiences: Maintenance

Membrane.....MEMS

Motollurgu	Cleaning		Donoir	Lifatima
Metallurgy	Frequency	Method	Repair	Lifetime
PbSn	150 — 500	Brush, Abrasive Pad	Mostly External	500K - >1M
Al Pad		Abrasive Pad, Chemical	None In- house	

Experiences: Maintenance

Hybrid Cantilever

Motollurgy	Cleaning		Popoir	Lifatima	
wetanurgy	Frequency	Method	Repair	Lifetime	
PbSn	50 – 150	Abrasive Pad	Non- repairable	100K – 1M	
Al Pad	200	Abrasive Pad	Non- repairable	1M	

Experiences: Maintenance

Spring

Motollurgy	Cleaning		Donoir	Lifetime	
metanurgy	Frequency	Method	Repair	Litetime	
PbSn	100	Abrasive Pad, Gel Pad	None In- house	>500K	
Al Pad			None In- house	>500K	

Experiences: Spacetransformers

Wired

- Buckling Beam
- Provided by Probe Card Supplier
- Multi-Layer Ceramic
 - Buckling Beam, Membrane, Spring
 - Most are Provided to Probe Card Supplier; Some 3rd Party Sourcing
- Multi-Layer Organic
 - Buckling Beam
 - Most are Provided to Probe Card Supplier
- None
 - Hybrid Cantilever, Some Membrane

More Spacetransformer Info: "C4 Probe Card Space Transformer Technology Overview"; By Grace Chan & Justin Leung of Intel Corporation; 2000 SWTW

June 3, 2003

Experiences: Selection

Buckling Beam

Irc	In	$\mathbf{\Omega}$
		M

Decision	2nd	Strengths	Weaknesses
Price, Performance, Support	Some	Mature, Repairable, Robust, Multi- DUT, Tip Shape	Pitch & Frequency Limitations

Experiences: Selection

Membrane.....MEMS

Sourcing					
Decision	2nd	Strengths	Weaknesses		
Performance	None	High Frequency, Planarity, Alignment, Fine Pitch	Cost, Leadtime, Single-Sourcing		

Experiences: Selection

Hybrid Cantilever

Sourcing				
Decision	2nd	Strengths	Weaknesses	
Leadtime, Cost	None	Leadtime, Cost, Prototyping	High Frequency, Non-repairable, Single-Sourcing	

Experiences: Selection

Sourcing				
Decision	2nd	Strengths	Weaknesses	
Performance	None	Performance, Quality, Mature	Cost, Leadtime, Single-Sourcing	

Key Challenges

2003 Southwest Test Workshop

June 3, 2003

Wrap-Up

- Buckling Beam is Predominant Technology

 Mature, Robust, Multiple Sources
- Vertical Probes
 - Accelerating Usage Across Application
 Spectrum
 - Proliferation of Suppliers / Technologies
 - Growing Multi-DUT Use
- Technical & Business Challenges to Meet Future Needs

June 3, 2003

Acknowledgements

- Thanks to Jim Ammenheuser of SEMATECH for the guidance he has provided in supporting all of the Wafer Probe Council's activities and projects
- Thanks to the Member company principals. Their spirit of cooperation has been essential to the success of the Wafer Probe Council

References

- Ref. 1:
 - "Area Array Interconnection Handbook"; edited by Karl Puttlitz & Paul Totta; Chapter 3 – Wafer-Level Test; Section 3.5.10.2; P.146. ©2001
- Ref. 2:
 - "A High Performance C4 Probe: TFI_™"; by G. Das & F. Taber of IBM Microelectronics; Presented at 2001 SWTW; P. 8
- Ref. 3:
 - "Overview of C4 Array Probing"; by Justin Leung of Intel Corporation; Presented at 1999 SWTW; P.4

SEMATECH, the SEMATECH logo, International SEMATECH, and the International SEMATECH logo are registered servicemarks of SEMATECH, Inc. All other servicemarks and trademarks are the property of their respective owners.