Predicting the Performance of Sort Tooling to 40 Gb/s

Brett Grossman Signal Integrity Staff Engineer Intel Corporation Hillsboro, OR <u>brett.grossman@intel.com</u> Bryan Boots Application Engineer Ansoft Corporation Boulder, CO bboots@ansoft.com

Outline

- Background
- Problem Statement
- Model creation process
- Model correlation
- Sensitivity analysis
- Summary
- Acknowledgements

Telecom Datarate Trend

What is 40 Gb/s?

- PMD devices
 - PMD Physical Media Dependent
- 40 Gb/s devices characterized by:
 - Very small risetime (~10ps)
 - Very small amplitude (~10mV)
 - Very small die size (~1.0 mm)

4

40 Gb/s - another view

Equivalent to transmitting more than <u>7 CD-ROM's</u> of data every second

40 Gb/s – yet, another view

Southwest Test Workshop - June 1, 2003

intel

Probe Technology Continuum

- > 90% of probe technologies currently address 10% of this spectrum
- Illustration based on response to RFI submitted to <u>35</u> probe technology companies

Probe Evaluation

Test vehicle designed

- For the typical battery of tests
 - Lifetime
 - Cres
 - ...
- But, high frequency performance was critical

Top view of evaluation vehicle

How could we evaluate the impact of design trade-offs on high frequency performance?

Problem Statement

- Need to quantify performance tradeoffs
 Performance = *f*(suppliers experience)
- Desired robust process where some iterations could be 'virtual'

 Current tools/methods had not demonstrated capability to support this complexity

Model Topology

- Complex signal path topology
 - Multiple substrates (cable, PCB, PI flex)
 - Multiple guide structures (Coax, CPW, microstrip)
- Physically small, Electrically large features

Model Creation

- Two high speed channels selected
- Signal paths segmented into 3 logical blocks
 - 1. Flex block
 - 2. Coax block
 - 3. Transition block

Model Creation (flex block)

Model Creation (coax block)

- Model for connector and coax built from coax structure and data sheet parameters
- Model parameters (blue) fit to measurements (red)

Model Creation (transition block)

Southwest Test Workshop - June 1, 2003

 The transition elements were created manually in HFSS

Simulation where two HFSS models are merged into c

 The individual elements are assembled for simulation

14

Model Correlation

Thru measurement (red) to model (blue) correlation shown from 0.05-40.05 GHz

Southwest Test Workshop - June 1, 2003

15

Sensitivity Analysis

– Microstrip vs. CPW length

Sensitivity Analysis

Impact on insertion loss

Sensitivity Analysis

Southwest Test Workshop - June 1, 2003

int

Summary

HFSS Learning curve, creating a robust modeling 'process'

 Ended up successfully modeling the path based on physical geometry

• Can continue to use this model for what-if type analysis to assess design trade-offs

Acknowledgements

- The authors would like to thank Marc Berube for his continued support of this work.
- We would also like to thank Cascade Microtech for their contributions and open discussions.

References

- Ansoft <u>www.ansoft.com</u>
- Cascade Microtech <u>www.cmicro.com</u>
- Boolean <u>www.xs4all.nl/~kholwerd/bool.html</u>
- LinkCAD <u>www.linkcad.com</u>
- Intel <u>www.intel.com</u> , <u>developer.intel.com</u>

