Multi-site Probing for Wafer-Level Reliability

Louis Solis De Ancona¹ Sharad Prasad², David Pachura²

> ¹Agilent Technologies ²LSI Logic Corporation

Outline

Introduction

- Multi-Site Probing Challenges
- Multi-Site Wafer Level Reliability Examples
 - TDDB
 - NBTI
- Conclusions

Traditional Reliability

- Long-term reliability is often equated to packaged parts tests
- Predictive of lifetime which is the key for designers
- Slice the wafer; package the devices; apply the stress in a special oven
- Packaging a wafer requires time, and several steps at extra cost
- Separate packaging handling operations may introduce damages and limits the number of available pins
- Spatial correlation is often lost
- If a lot of wafers is "defective" you have to do it all over

Wafer Level Reliability

- On-wafer does not require extra steps and is immediately available!
- On-wafer differentiates damage introduced by packaging operations!
- Spatial correlation is preserved!
- As oxides become thinner the effects of packaging damage due to ESD are unknown. ESD effects on new gate materials are unknown
- Cu difficult to bond. In general, for interconnect reliability additional Al bond pads are required

Outline

Introduction

- Multi-Site Probing Challenges
 - Multi-Site Wafer level Reliability Examples
 TDDB
 NBTI

Conclusions

Multi-Site Probing Opportunities

- Stressing many devices at the same time, or
- Devices can be grouped in categories, thus stress groups of devices can be created
- Different oxide thickness, or device types, can be stressed at the same time
- User defined parameter tests pre- and post-stress, can be achieved individually or by group
- Instrumentation and software are required to have features to manage multiple devices and conditions

Instrumentation

- Voltage measurement resolution 2 μ V and forcing voltage resolution 100 μ V
- Current measurement resolution 10fA and force current resolution 50fA
- Switching Matrix < 0.1pA leakage per channel and fast switching times
- Support matrix or multiplexor cards

I. Software

- Traditional package level testers can group test hundreds of devices, however because the number of devices and tester architecture their scan time can be in hours
- Software must scans in milliseconds to determine the exact time to breakdown, or NBTI phenomena, etc
- Prevents relaxing the devices under stress. This is, the devices are always under stress, unless they are being measured
- Each DUT may be stressed individually, or devices grouped in multiple sets

II. Software

- Effectively the system has a per-pin architecture
- Scanning can be linear, logarithmic or the intelligent, rules based, Owl Adaptive ScanTM
 - The intelligent Owl Adaptive ScanTM changes the scan frequency as device parameters change, thus breakdown, or other phenomena, can be accurately determined

Adaptive ScanTM

■ Owl Adaptive ScanTM adapt to changes in the device behavior and can determine soft breakdown

Southwest Test Workshop 2003

TDDB

- For oxides > 4nm oxide breakdown and breakdown model is well understood.
- For oxides <4nm there is a need to determine
 - What is breakdown?
 - How do you model it?

Oxide Breakdown

- For thick oxides there is a clear breakdown.
- Thin oxide breakdown is not clearly defined
 - There is a soft breakdown
 - Self annealing effect?
 - How do we define this breakdown and how do we determine it experimentally?

Thick Oxide Breakdown Behavior

Thick oxides have a "hard" breakdown

Thin Oxide Breakdown

In thin oxides the breakdown is not well defined and the challenge is to detect this atypical behavior

TDDB Data From Multi-Probe

QBD

- Spatial resolution is preserved
- Weak dies, if present, can be located immediately
- Further analysis can be done to verify the causes of early failure

TTF wafer map and Weibull Plot

Spatial resolution and statistical data is obtained at the same time

Outline

Introduction

Multi-Site Probing Challenges

Multi-Site Wafer level Reliability Examples

TDDB

Conclusions

NBTI Measurement Issues

- NBTI is a mechanism that degrades PMOS devices
- Removing stress can recover the device
- Recovery time is very short
- In actual circuits devices may not recover, however during measurements:
 - If the instrumentation is not fast enough then it will give false information

STUDY OF Sub-Quarter-Micron PMOSFET NBTI UNDER DC and AC STRESS Erhong Li, Sharad Prasad, Sangjune Park and John Walker ,PV2003-06 p408 Electrochemical Society Proceedings, Paris 2003

Stress Relaxation Effect in NBTI

I. Conclusions

- In this presentation we have highlighted several advantages and opportunities of multi-site wafer level probing for reliability measurements
- Multi-site wafer level probing offers the distinctive advantage of rapidly and accurately characterize new materials or products.
- A challenge for multi-site probing is to have and properly configure equipment and software to take full advantage of the architecture
- Actual measurement times must be in milliseconds

II. Conclusions

System must avoid relaxation effects

- It is key to design an appropriate probe card pattern for testing multiple sites common to several tests, and schedule tests to maximize probe card test coverage
- Multi-site probing offers exciting challenges, but great benefits, to characterize new materials or products and predict accurately their reliability:
 - e.g TDDB: In one touchdown is possible to measure and calculate the Voltage Acceleration factor, Γ
- Probe card and prober should must be able to withstand high temperatures for a full characterization set

User Interface

