A Novel *In-situ* Methodology to Characterize Bond Pad and Dielectric Mechanical Behavior during Wafer Level Test

Cheryl Hartfield

Member, Group Technical Staff Texas Instruments, Inc. 13536 N. Central Expressway Dallas, TX 75243

Tom Moore, Ph.D.

President Omniprobe, Inc. 7738 Forest Lane, Ste. 426 Dallas, TX 75230

Jerry Broz, Ph.D.

Director R & D Point Technologies, Inc. 6859 N. Foothills Hwy Boulder, CO 80302

SouthWest Test Workshop - 2003

Outline

- Objectives
- Background
- Approach
- In-situ Methodology Development
- Application of Methodology
- Summary

Objectives

- Develop a methodology to assess the *in-situ* mechanical behavior of a bond pad metal stack
 - Evaluate the elastic and plastic deformation of bond pads during wafer level testing
 - Determine the deformation limits of the low-k dielectric layers
 Impact of bond pad reinforcement structures
 - Impact of various bond pad metals
- Visualize the probe process in real-time as the probe tip scrubs across a bond pad
- Correlate the probe scrub action with contact resistance, overtravel, and applied strain

Background

- Semiconductor device development and scaling
 - Conversion from aluminum to copper traces and from SiO₂ to lower dielectric constant materials
 - Metal stack is a complex multi-layered "sandwich" of metal conductor traces and insulating dielectric materials
- Potential for damage during fabrication, probe, and assembly may cause long term reliability issues
 - Low-k materials tend to be fragile and susceptible to damage
 - FSG, k~3.3: Modulus 50GPa
 - HSQ, k~3.1: Modulus 4GPa
- Knowledge of the dielectric / metal stack characteristics and acceptable damage limits are critical
 - Defining wafer level test practices of advanced IC technologies
 - Synergy between test and assembly, i.e., optimized probe practices facilitate improved assembly yield

Background (cont.)

- Overtravel is required to reduce contact resistance (CRES) to an acceptable level during test
- At the end of overtravel, a small contact area imparts large stresses on the bond pad and the dielectric stack
 - Applied stress can be 75-400 MPa range for various tip sizes (0.6mil 1.2mil) using 64um overtravel, 1.75BCF card

Background (cont.)

- In-situ visualization of the "scrubbing action" during wafer test is extremely difficult
 - Previous work used an SEM approach with an embedded probe

• Want to correlate REAL-TIME in-situ "scrubbing action" with CRES

Background (cont.)

- Current methods of assessing dielectric damage
 - "Lab Tests" that vary the probe conditions
 - <u>PROS</u>
 - * High volume, statistically relevant sample size easily generated
 - * Easy to generate data on variety of materials (full flow, blanket films)
 - * Easy to extrapolate data to test floor

<u>CONS</u>

- Data analysis tedious and time-consuming
- Dielectric cracks can be difficult to identify on fully processed material and correlate to probing conditions
- * "Production" may have weaknesses not uncovered by "lab tests"
- High % uncertainty due to wide std .dev. (wide range probe specs)
- FEM
 - <u>PROS</u>
 - Can run new "test conditions" without generating new Si
 - <u>CONS</u>
 - Model only as good as the input variables.
 - Often relies on data provided by mechanical tests of dielectric films

Approach

- Utilize the capabilities of the Omniprobe Analytical Tool
 - Micromanipulator enabled for vacuum environments
 - Configured for mechanical tests using various tungsten probe tips
 - Electrical test resistance and contact resistance
 - Real time video image capture in a Focused Ion Beam (FIB) instrument
 - Applied strain sensing / load monitoring

Omniprober Model 100.5

Omniprober mounted on FEI DB235 FIB

- Video capture and still images
 - Scanning Electron Microscope (SEM) videos synchronized with overtravel experiment
 - Experiments conducted within single beam FIB instrument
 - High resolution SEM images at critical points

Overtravel and Fixturing

- Precise 3-D translational control
- Customizable "test probe" holding fixtures
- Electrical Resistance
 - Electrical continuity detection
 - Contact resistance monitoring
- Strain sensor
 - Applied probe force monitoring
 - High sensitivity to loading changes
- In-Situ "Lift-Out" for Transmission Electron Microscope (TEM)sample prep and inspection
 - Determine presence of material cracking
 - Reliable, site-specific capability of the Omniprobe tool

• In-Situ Lift-Out to assess dielectric stack cracking

Optical image

FIB image

TEM image

Hartfield et al. SWTW - 2003

08-MAY-2003 Page 10

Overview of Experimental Hardware

Approximate probe orientation in FIB chamber

Proof of Concept Applications

- Evaluation of inter-layer dielectrics covered by thin film blanket Cu
 - Three low-k dielectric materials with different mechanical and material properties

Evaluation of aluminum capped test die

- Bond pads with a double thick dielectric
- Bond pads with dense metal structures
- Multiple touchdowns on a blanket low-K dielectric material layered on top of silicon

Methodology Details

- Electrochemically polished tungsten probes were mounted into the Omniprobe holding fixture.
 - The probes were bent with a 8-mil tip length
 - The probe tips were electrochemically radiused
 - Tip diameter is less than 1 mil

Synchronized data collection

- Real-time scrubbing action correlated with overtravel, strain, and electrical resistance
- Wafer is stationary, probe z-axis height adjusted to apply overtravel
- Surface contact detected with strain gauge and verified with in-situ visual observation
- Overtravel is initiated 0.1um above the surface

Results - ILD Materials (cont.)

Breaking through metal surface layer

Comparison of 3 ILD Mat'l Strain and CRES

Results - Excessive Overtravel Test

Strain monitored while overtravel applied in successive forward steps.

Tip is already into Si well before 100um overtravel.

Strain data may be able to reveal when probe tip deformation occurs.

Results – Aluminum Bond Pads

• High Res SEM images – 0 to 100um of overtravel

Results – Aluminum Bond Pads

• Scrub mark visualization and CRES vs. Overtravel

Stable contact occurs at ~6um overtravel with a clean radiused tip

Hartfield et al. SWTW - 2003

08-MAY-2003 Page 18

Real-time probe scrub visualization on a non-aluminum metallized substrate

Results – Metallized Substrate (cont.)

Probe on Metallized Substrate

Hartfield et al. SWTW - 2003

08-MAY-2003 Page 20

Real-time probe scrub visualization on Cu showing electrostatic debris interactions

Results – Copper Substrate (cont.)

Multiple Probe on Copper Substrate

Hartfield et al. SWTW - 2003

08-MAY-2003 Page 22

Real-time probe scrub visualization on an aluminum capped bond pad

Results – Aluminum Bond Pads (cont.)

Probe on Aluminum Bond Pad

Hartfield et al. SWTW - 2003

08-MAY-2003 Page 24

Conclusions / Future Work

- A methodology has been developed for *in-situ* probe scrubbing action visualization combined with synchronized force and electrical measurements.
- Using this method a clearer understanding of probe effects to the materials under test as a function of material (probe or sample) composition, probe tip shape, etc., can be developed.
- Future work.....
 - Calibration of strain
 - In-situ crack detection
 - ◆ Blade assemblies with variable probe force (0.5 3 g/mil)
 - Flat tip vs. radius tip shape comparison
 - Scrubbing behavior on Al, Cu, and Au pad comparison
 - Continuing Low-K studies

Acknowledgements

• Omniprobe

- Aaron Smith
- Rocky Kruger

• Texas Instruments

- Pat Jones, DFAB PFA
- Greg Hotchkiss, SCPD
- Jason Aronoff, PDT

