

2003 SOUTHWEST TEST WORKSHOP intel.

Vertical Probe Development for Copper Bump Test Challenges

Bahadir Tunaboylu, PhD, Kulicke & Soffa Industries Ethan Caughey, Intel Corporation

June 2, 2003 Joint Development and Collaboration Effort Between K&S and Intel

BTunaboylu/ECaughey

Objective: Development of a vertical probing solution for Cu bump area arrays for next generation sort requirements

Outline:

- Sort requirements for copper probing and challenges
 - Risk mitigation strategy prioritizing critical requirements
- Addressing requirements by modeling and DOEs
 - Pitch (area array)
 - Probe force variance
 - Contact resistance (probe tip geometry-DOE)
 - Current carrying capability
 - Thermal study

Critical Requirements are prioritized through risk analysis

Item	Requirement	Risk Prioritization
		High Risk (Show Stopper) - If
		cannot meet, then will not be able
Probe Pitch	180 um	to sort.
		High Risk - Can cause damage to
Probe Force	<16 g/probe @ Max OT	metal layer stack up.
		Medium Risk - Will decrease sort
Contact Resistance	< 0.5 Ω	yeild.
Probe Current Carrying		Medium Risk - If do not meet, will
Capability	> 400mA	increase cost of ownership.

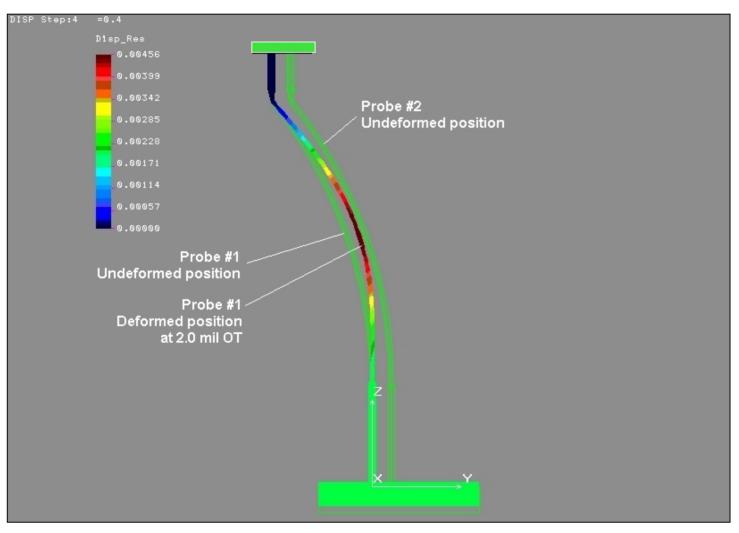
Concern:

• Probe to probe interference

 With multiple tolerances contributing to the different overtravels of adjacent probes, need to ensure probes will not interfere.

Pitch from Probe Perspective intel.

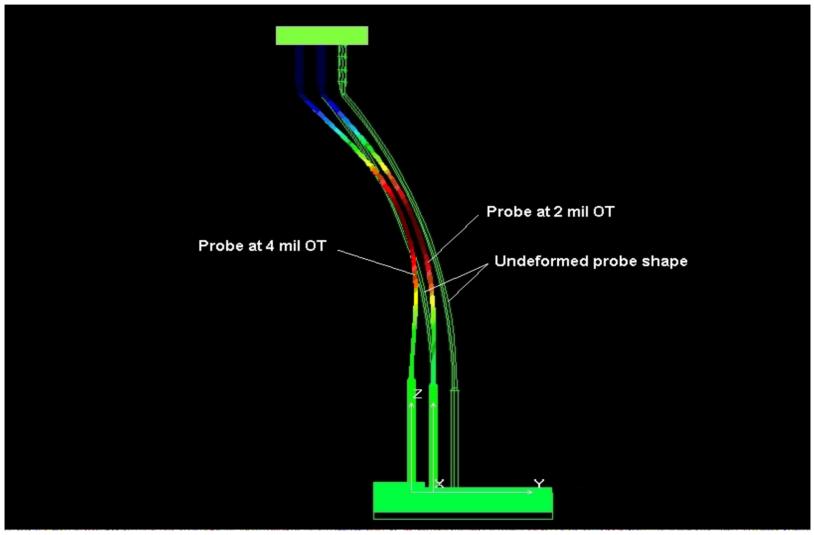
Model Conditions:


- Two probes in given configuration (see following model)
- Probe pitch: 7 mil (180 um)
- Tops of both probes fixed at same Z height.
- Probes deflected in 1 mil OT increments up to 5.0 mil overtravel
 - 1 probe deflecting up to 2 mils prior to the deflection of the adjacent probe.

Success criteria:

• Gap between the two probes > 0.5 mils at all overtravel conditions.

Pitch from Probe Perspective intel.


Case #1: Probe deflection at 2.0 mil OT

BTunaboylu/ECaughey

Pitch from Probe Perspective intel

Case #2: Probe deflections at 2.0 and 4.0 mil OT

BTunaboylu/ECaughey

Pitch from Probe Perspective intel.

Conclusion: Model gap analysis determined the probe geometry is a low risk of probe interference under overtravel conditions for the pitch considered.

Two Concerns:

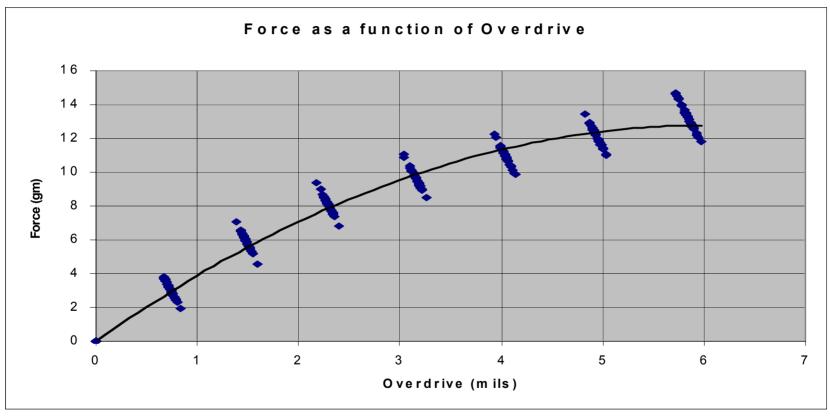
• Probe to probe force variance

 Analysis of probe force variance across multiple overtravels

• Probe force variance across lifetime

Analysis of probe force across the life of the probes.

Probe force variance DoE setup


Sample size - 40 probes

Conditions:

- Measured probe force in 1 mil overtravel increments up to 6 mils of overtravel.
- Aged probes with 5 mils actual overtravel with probe cycling instrument.
- Measured probe force in multiple increments across the probe lifetime up to 500K touchdowns.
 Initial, 100K, 250K, 500K

Probe Force Variance DoE inte

Data presents the probe force of the 40 probes across multiple overtravels and from initial to final cycling increments.

Conclusion: Probe force meets force requirements and concluded that there is no statistically significant probe force variance across lifetime.

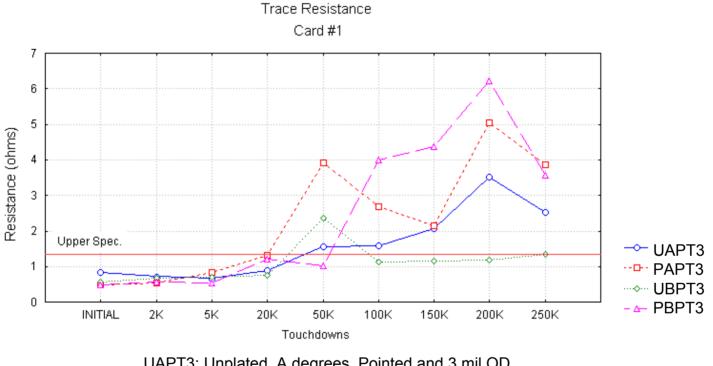
BTunaboylu/ECaughey

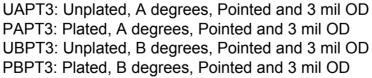
Purpose:

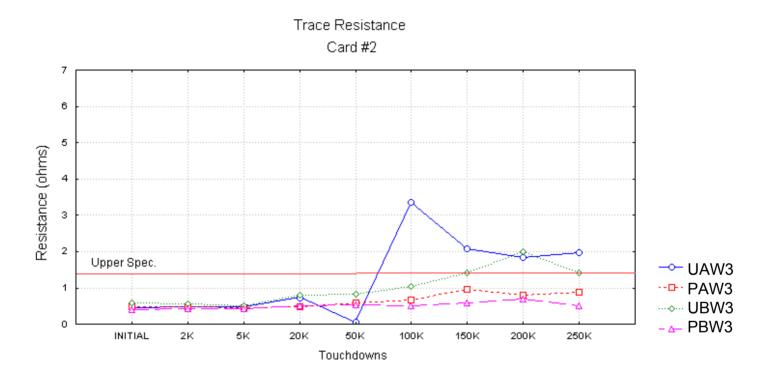
 To determine the best probe tip geometry and metallurgy for copper bump probing

Test Conditions:

- •4 cards/wired space transformers
- •Measure trace resistance
- •Measure at daisy chained bumps
- •Age probes and repeat measurements

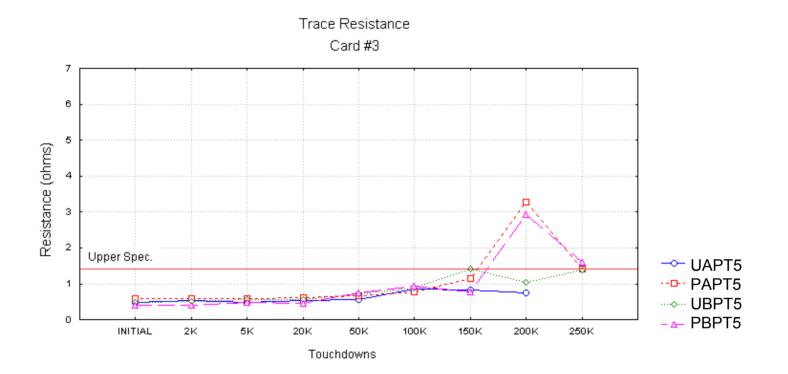

Initial, 2K, 5K, 20K, 50K, 100K, 150K, 200K, 250K

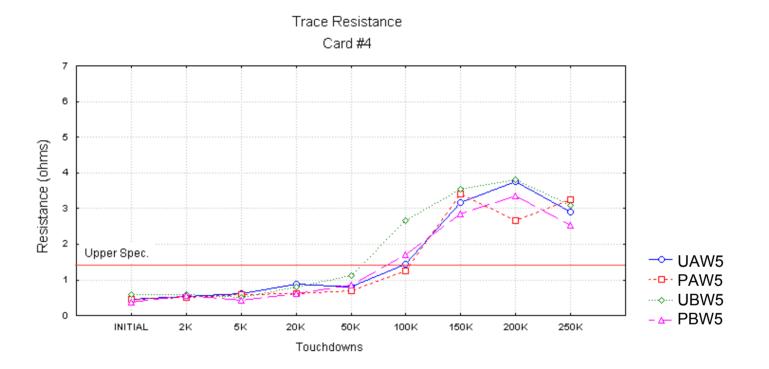




Selected list of process variables

- Probe Plating: Unplated, Plated
- Tip Included Angle: A, B
- Tip Shape: Pointed, Wedge
- Probing OT: 3 and 5 mils
- Selected list of response variables
 - Contact Resistance on daisy chained Cu bumps
 - Probe wear tip size
- Test conditions
 - Probe Diameter: 3 mil
 - Probe Metallurgy: BeCu alloy
 - Ambient temperature
 - Trace resistance spec limit: 1.4 ohms




UAW3: Unplated, A degrees, Wedge and 3 mil OD

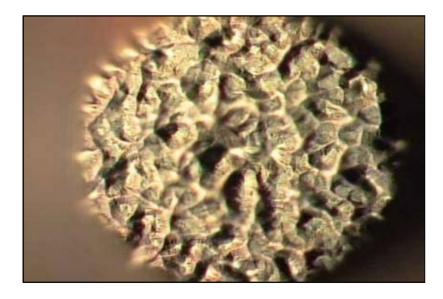
6/2/2003

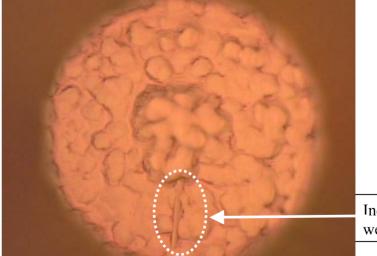
in

UAPT5: Unplated, A degrees, Pointed and 5 mil OD

UAW5: Unplated, A degrees, Wedge and 5 mil OD

6/2/2003


in



Contact Resistance DOE Summary

Leading configuration- Angle B, plated wedge

Indentation from wedge tip

Clean Cu Bump

Probed Cu bump with Wedge probe

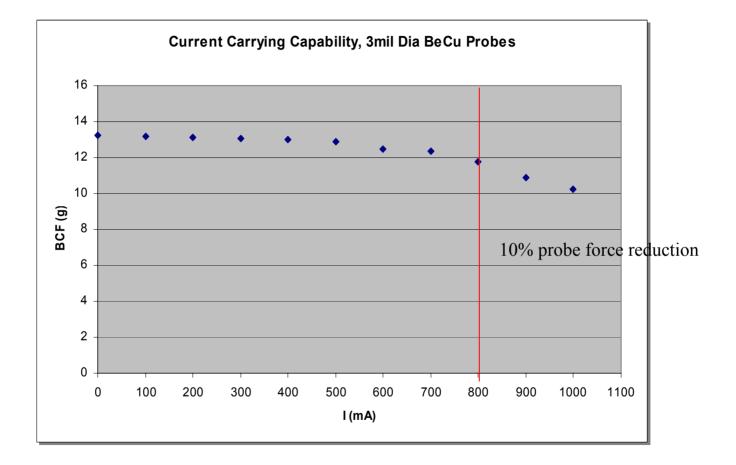
BTunaboylu/ECaughey

Current Carrying Capability DoE

Purpose:

 To measure current carrying capacity of 3 mil-dia BeCu probes on a test head by using 10% probe force reduction criteria at 5mil OD

Criteria:

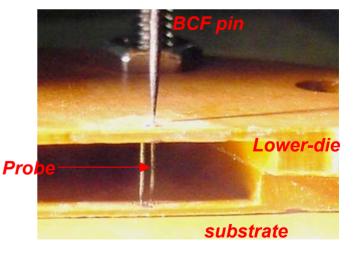

 There is a critical dc current value above which the mechanical degradation of a probe is significant. There will be no damage to the elastic properties of the probe below a critical value. The criteria for the maximum current capability is the 10% drop in probe force.

Test Conditions:

- Balance Contact Force station
- Probe-head
- 5mil OD
- 1 min hold (current)

Current Capacity = 800 mA

BTunaboylu/ECaughey

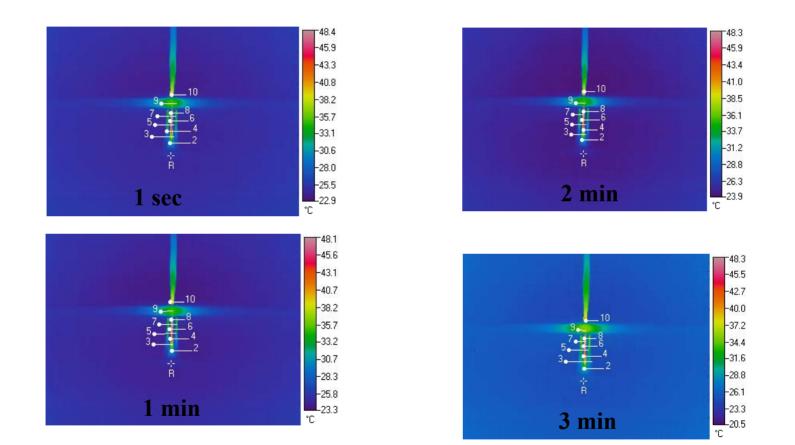


Addressing Temperature vs Current

Purpose is to characterize the probe temperature as a function of applied probe current.

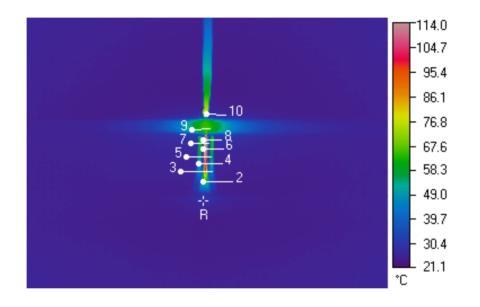
Test Conditions:

- A cross-sectioned probehead and a high-resolution IR thermal imager
- 4 probes used for data collection of each current level
- The temperature measurement accuracy due to reflectivity of BeCu surface is +-2 degrees
 - 1. Upper die
 - 2. Lower die
 - 3. Measured probe
 - 4. BCF pin
 - 5. Gold plate



Probe head set up for IR measurement

Thermal Images for 0.4 Amp Measurements


Temperature results for 4 probes at 0.4 Amp as a function of time - Temperature is constant with hold time

BTunaboylu/ECaughey

Thermal Image of the probe-head for 0.8 Amp Measurement

Max probe temperature at max current carrying capacity (800 mA) determined to be 110°C.

BTunaboylu/ECaughey

Summary of Experimental Results

Current (Amp)	Max Temp,°C (BeCu Probe)
0.2	28.5
0.4	45.2
0.5	57.4
0.6	72.1
0.8	109.6
1.0	183.1
1.2	222.9
1.3	253.9

Conclusion: Probe current carrying capability is determined to be 800 mA and has a max temp. of 110°C at this current level. Temperature at the current requirement (400mA) determined to be 45°C.

Item	Requirement	Risk Level
		Low Dick probe geometry
, .	400	Low Risk - probe geometry
Probe Pitch	<u>180 um</u>	capable of meeting 180 um pitch
		Low Risk - Probe geometry
Probe Force	<16 g/probe @ Max OT	produces < 16 g/probe @ max OT.
		Low Risk - Probe configuration
		stable at < 0.5 Ω Cres out to 250 K
Contact Resistance	< 0.5 Ω	TD.
		Low Risk - Current carrying
		capability determined to be 800mA
		with max probe temperature at
Probe Current Carrying		110°C. Temperature concluded to
Capability	> 400mA	be 45°C at 400mA.

Risk level for each critical requirement reduced to low.

Authors would like to thank K&S R&D Team for their valuable contributions in this work.