MicroForceTM Probing for Devices with Low-k ILD Materials

Rod Martens, Ph.D., FormFactor, Inc. Abdel Abdelrahman, Intel Corporation Steve Martinez, Tokyo Electron Limited

Southwest Test Conference, Long Beach, CA June, 2003

Contents

Introduction to MicroForce[™] Probing Technology

- Industry Requirements for Probing Flip Chip Bump Devices
- Probe Card Architecture
- MicroForce Probing Definition

FormFactor Lab Development
Single Probe Testing of Force and Cres

Sort Floor Validation

- Force Measurements
- Probe Mark Comparisons
- Cres and Probe Conditions After Aging Test

Conclusions

Industry Requirements for Probing Advanced Flip Chip Bumped Devices

- Lower Force Probing
 - Low-k ILD materials are more fragile
 - Low probe force desired to minimize damage to flip chip bump and ILD materials
- Low and Consistent Contact Resistance
 - High frequency and high power applications require tighter Cres control
 - Applications require higher current to pass through probe system without much resistance

Finer Pitch

– Roadmap to $100 \mu m$ pitch requires revolutionary probing approach

FormFactor BladeRunner[™] Probe Cards (For Probing Bumped Wafers)

FormFactor Probe Card Architecture

Controlled Impedance Tester Interface PCB Assembly

> Interposer With MicroSpring Contact

Space Transformer

MicroSpring[™] Contact for Probing Flip Chip Bumps

5

MicroForce[™] Probing Definition

- What is MicroForce[™] probing?
 - It is a coordinated X-Y-Z probing motion
 - Developed to satisfy a number of stringent requirements for probing devices with low-k ILD materials
 - Breakthrough results with 10:1 reduction of probe force yet achieving consistent and low contact resistance

Prober Chuck Moves in Z-axis
Contact with Flip Chip Bump
Chuck moves in X-Y-Z

MicroForce[™] Probing on Pb/Sn Bump

MicroForce™ Probing Motion

Chuck Translation Direction

7

MicroSpring™ Contact Probing on High-Pb Bump

FormFactor Laboratory Development

TEL Synchronous XYZ Drive

3D drive control method

Benefits

Increased throughput with simultaneous XYZ drive

9

Smooth drive creates desired probe contact

Experimental Setup - Predictive Probing

Significantly Lowered Probe Force with MicroForce Feature

Scrub Ratio = Movement in X/Y Movement in Z

Repeatability of Cres Study on Pb/Sn Bumps

Stable and Low Contact Resistance with MicroForce Probing

12 <

FormFactor

Sort Floor Validation

Outline of <u>Probe card Characteristics</u> <u>Measurement System</u>

Definition

PCMS is a measurement system that can measure the probe card displacement under load. The result of PCMS includes the displacement of head plate, probe card and probe card holder.

Low Probing Force Using MicroForce Feature

- Used TEL's PCMS to evaluate probe card deflection under varying loads. Data generated included actual spring compression and probing force per dialed chuck motion.
- Max probing force = 13N at 80μ m of spring over-travel
- Max force/probe = 0.3g/mil with MicroForce vs. 3 4g/mil without MicroForce •

Probing of Microprocessor Devices

Testing

- Sort tests were run with and without MicroForce probing
- Correlation of device binning and other parametric indicators measured
- 3 production lots of microprocessor devices were tested

Results

- Binning data collected under MicroForce had a correlation rate of 95.9 – 97.4% vs. existing probing Recipe (target is >95%)
- Other parametric measurements indicated comparable results
- No issues in terms of the mechanical and electrical behavior of the springs under MicroForce Probing. Metrology data remained within the defined specifications.

Probe Mark Comparison

Standard Probing /

MicroForce Probing

Validation of MicroForce Low Cres

- Good convergence of Cres
- Mean Cres at different programmable ovetravels: $0.1 0.35\Omega$
- Enabling a wide manufacturing process window

<u>POT um</u>	<u>Mean</u>	<u>Std Dev</u>
15	0.3466	0.047
35	0.1492	0.023
50	0.1256	0.024
70	0.0898	0.020

MicroSpring Contact After Aging Test

After 500,000 Touchdowns

New (after probing 6 wafers)

Cres Stability After Aging Test

Under MicroForce Probing, Cres remained stable for 500K touchdowns

Conclusions

- MicroForce Technology provided new capabilities to meet new-generation probing requirements.
- MicroForce Probing offered low contact resistance necessary for high power delivery requirements.
- MicroForce Probing delivered very low probing force (<2g) thus minimizing the risk to damage die with low-k ILD materials.
- Sort on production devices proved very stable and correlated to existing probing recipes. The solution satisfies Intel probing requirements.
- Future work will be targeted at:
 - Throughput Optimization
 - Production Sort Certification

Acknowledgment

The authors would like to thank the following contributors who made the MicroForce Probing development possible:

Tim Cooper Gene Kochert Koichi Matsuzaki Lance Milner Jesse Nuanez Weida Qian Scott Scofield Rick Takebuchi Dilip Wadhwani Sunil Wijeyesekeara FormFactor Intel TEL Intel Intel Intel Intel TEL Intel FormFactor

