SUMITOMO ELECTRIC

New probe tip fabricated by MEMS (LIGA process) for no-cleaning test

Tsuyoshi Haga, K.Okada, J.Yorita, Y.Hirata, S.Shimada*

Harima R&D Department Osaka R&D Laboratories *Analysis Technology Research Center Sumitomo Electric Industries, LTD.

SUMITOMO ELECTRIC

Outline

- MEMS probe background Introduction of micro contact-probe fabricated using LIGA process
- Benefits of no-cleaning test
- Analysis of scrubbing motion
- Design of cleaning-free shape
- Sharpening of LIGA probe tip
- Verification of no-cleaning operation
- Conclusions

Background of MEMS probe

<Requirements>

- Fine pitch capability (Down to 50µm or less?)
- Multi test (64DUT \rightarrow 128DUT \rightarrow wafer level?)
- High frequency test (at speed testing GHz)
- Low cost testing
- High reliability

High accuracy micro spring Low contact force probe tip

Sumitomo electric

 Limit of conventional machining Accuracy,Shape,etc.
 Increase of conventional machining cost

LIGA(MEMS)

High accuracy, high aspect ratio MEMS technology
Mass production process based on X-ray lithography

About LIGA process

<Process flow (LIGA)>

(Lithographie-Galbvanoformung-Abformung)

<<u> Advantages></u>

- •High accuracy: ±0.4mm
- •Good perpendicularly:
 - 0.1µm/100µm

SUMITOMO ELECTRIC

- •High aspect ratio: 10 or more
- High resolution/sharp edge Tip R:< 1μm
- Multi material (metal,plastic,ceramics)

Mass production process

Sumitomo electric

LIGA probe

New material : Ni-Mn alloy

Controlled grain size & crystal orientation High hardness (HV 600 or more) High toughness Good electrical resistivity($1.3 \times 10^{-7} \Omega m$)

Benefits of no-cleaning Test

Simulation of scrub action

Why do adhesion and accumulation of debris occur?

 ◆Initial adhesion of AI debris occurs at backward scrub action.
 → AI debris increase the debris adhesion at next contact. Backward scrub action is useless for electrical contact.
 June 3, 2003

SUMITOMO ELECTRIC

Analysis of scrub motion

LIGA probe

SUMITOMO ELECTRIC

Basic characteristics of LIGA probe

SUMITOMO ELECTRIC

Analysis of scrub action

Probe Tip : Pillar-shaped structure imitated truncated pyramid tip

2003 Southwest Test Workshop Simulation of no-cleaning shape

Design of no-cleaning shape

SUMITOMO ELECTRIC

No-cleaning shape Fabricated by LIGA

2003 Southwest Test Workshop Sharpening of LIGA probe tip

June 3, 2003

SUMITOMO ELECTRIC

EDMed surface profile

Hardness variation of the EDMed surfaces

SUMITOMO ELECTRIC

Verification of no-cleaning operation

Probe Tip : No cleaning shape

Verification of no-cleaning operation

Before touchdown Forward side Backward side

aluminum

Newly designed (no-cleaning) tip sharpened by μ-EDM

Conventional

(trapezoidal) tip

SUMITOMO ELECTRIC

Conclusions

• Micro contact probe fabricated by LIGA process (MEMS).

• Probe tip sharpening using the LIGA and μ -EDM combination.

• New probe tip shape for cleaning free test.

To realize cleaning-free test:

Aluminum debris generation phenomena were analyzed by dynamic SEM.

The scrub simulation technology by applying cutting simulation technology was developed.

SUMITOMO ELECTRIC

SUMITOMO ELECTRIC

Cutting tool simulation technology

For cutting tool shape design & cutting condition analysis

Scrub simulation

Basic characteristics of LIGA probe

SUMITOMO ELECTRIC

Ni Grain Size Control

June 3, 2003

Hardness:Hv620

SUMITOMO ELECTRIC

Crystal orientation control

Crystal orientation distribution

Good uniformity of grain size and crystal orientation along thickness

Alloy design

High heat resistance Ni alloy

Suppress NiS,SOx generation

 $Mn + S \rightarrow MnS$

Ni + S \rightarrow NiS (Very brittle) S + O2 \rightarrow SOx (brittle)

SUMITOMO ELECTRIC

