New Tools for Probing Process Management

Cary Kiest Electroglas, Inc.

South West Test Workshop 4 June 2003 Long Beach, CA USA

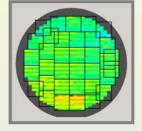
Presentation Overview

Probing Process Management

- Background
- Today's Tools
- Motivation
- An Inline Probing Process Management System
 - Requirements
 - System Elements
 - Validation
 - Practical Considerations
- Conclusions

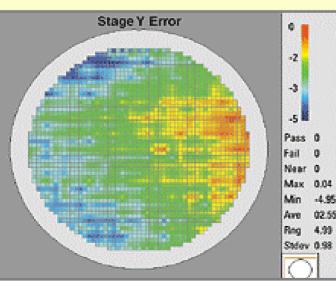
Background

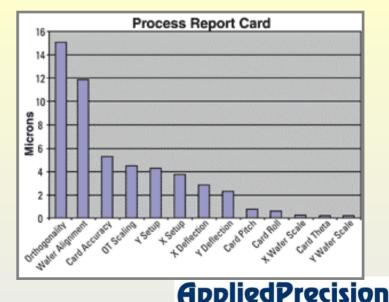
- Technology Trends
 - Test Cell Efficiency (Throughput):
 - Test time per wafer is falling in many applications
 - More Parallel Test
 - BIST on whole wafer
 - Faster Testers
 - Cost of Downtime is increasing:
 - Higher cost testers
 - Higher cost probe cards
- Impact
 - Test Cell Efficiency and Cost of Ownership are key measures



Background

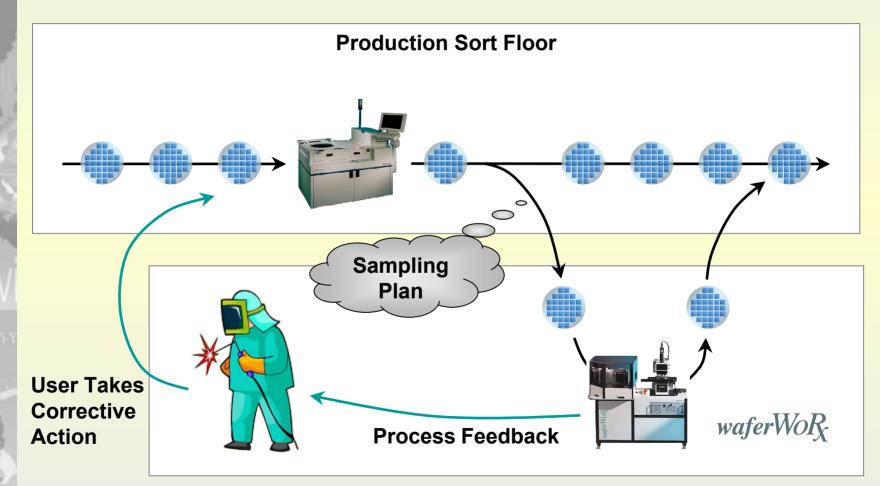
- Technology Trends
 - Fine Pitch Probing:
 - I/O larger than circuitry on IC's drives need for smaller pads
 - Lithographic probe cards improve probe card accuracy
 - 25ųm bonders means probing is only barrier to smaller pad
 - Impact:
 - Greater emphasis on PTPA and prober control
 - Thermal stability has become vital
 - Many probers are on the verge of not being capable for new probe cards




Definitions

- Process management is the control and improvement of business processes through understanding, measuring, innovating, and managing how work gets done to accomplish organizational goals
- Applied to wafer test, we aim to offer process characterization and understanding that facilitate improvement through reduced costs and less waste (higher yield)

- Today's Tools
 - waferWoRx Probing Process Analysis:
 - Enables automated root cause analysis for rapid corrective action, yield optimization and control
 - Helps users differentiate between prober and probe card issues
 - Eliminates need for wasteful trial-and-error problem solving



Enabling the world's core technologies

7

Product and Data Flow with Today's Tools

- Objectives for New Inline Tools
 - Leverage waferWoRx analysis capability
 - Increase Test Floor Coverage
 - Analyze more wafers from more test cells
 - Catch and correct process deviations earlier
 - Expand Test Cell Performance Characterization
 - Track performance history for each test cell
 - Automate analysis operation
 - Show trends and predict future events
 - Deliver Process Management Information
 - Fast feedback response
 - Format results for quick, accurate interpretation
 - Make results available at all beneficial locations

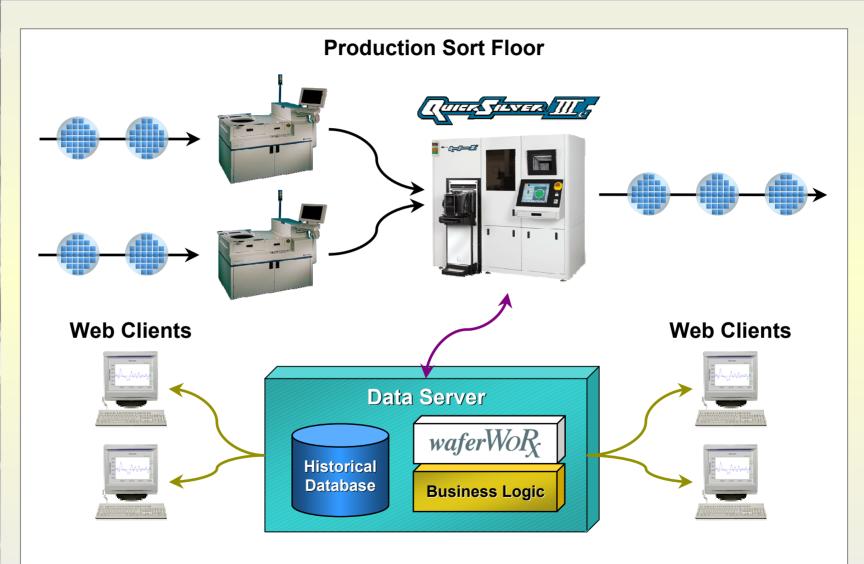
Motivation

- Why Do This Inline?
 - Get as Close as You Can to the Probing Process:
 - Faster problem detection
 - Faster problem correction
 - Kill Two (or more) Birds With One Stone:
 - Detect and classify other wafer defects
 - Detect and classify other probing problems (PMI)
 - Automate wafer map updates
 - Share procurement justification across multiple benefits

An Inline Probing Process Management System

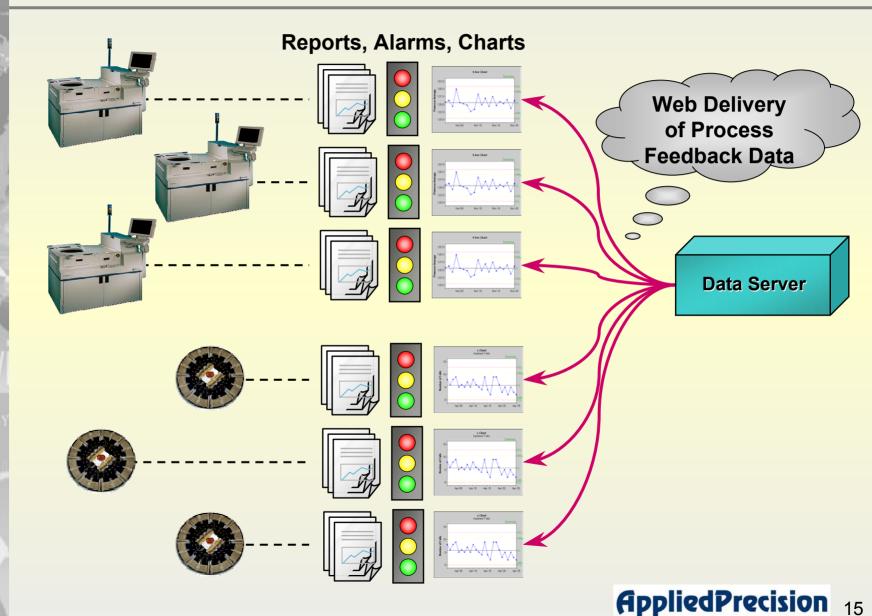
Inline System Requirements

- Accurate Probing Process Analysis
 - As throughput increases, output validity must be maintained
- Cost Effective Deployment
 - Maximize Test Floor Coverage
 - High throughput is key
 - Track multiple test cells
 - Minimize Ongoing COO
 - Reliability
 - Fast and Easy Setup
- Process Data Delivery
 - Easy to Access and Understand
 - Zero in on Priority Events Quickly



Inline System Elements

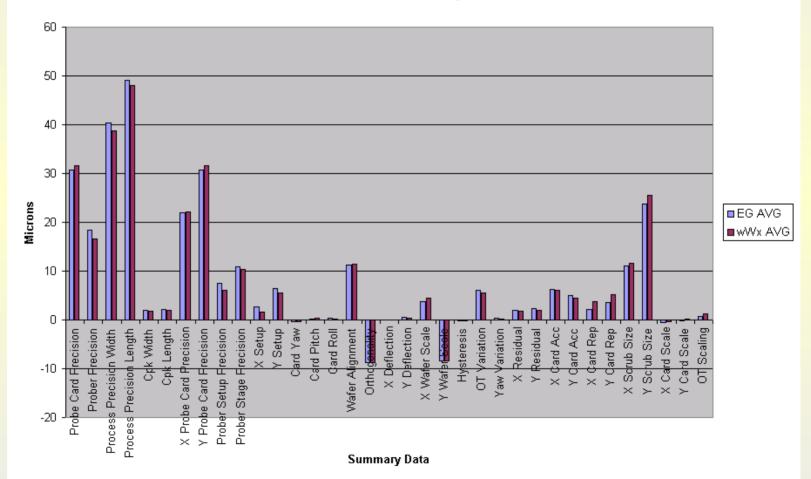
Element	Contribution
waferWoRx Software	Established Standard for Probing Process Root Cause Analysis
QuickSilver	High Throughput Metrology and Inspection, 300mm Capability, Production Floor Networking
Data Server	Historical Database, SPC Analysis, Business Logic, Analysis Drill-Down, Web Server
Web Browsers	Fast, Easy Data Delivery, Leverages Existing PC / Workstation Investment, Minimal Learning Curve



Inline System Overview

AppliedPrecision 14 Enabling the world's core technologies

Process Data Delivery


Probe Mark Metrology Accuracy

- Can Data From QuickSilver Be Used?
 - QuickSilver tool must supply 46 parameters for each scrub mark with comparable accuracy to waferWoRx
- Validation Study:
 - Measure same probed wafer on waferWoRx and QuickSilver systems
 - Focus on Repeatability and Reproducibility
 - Run PMI results from both tools through waferWoRx analysis algorithms
 - Compare results (Report Card format)

Probe Mark Metrology Accuracy

Validation Study Results


AppliedPrecision 17 Enabling the world's core technologies

Probing Process Variation

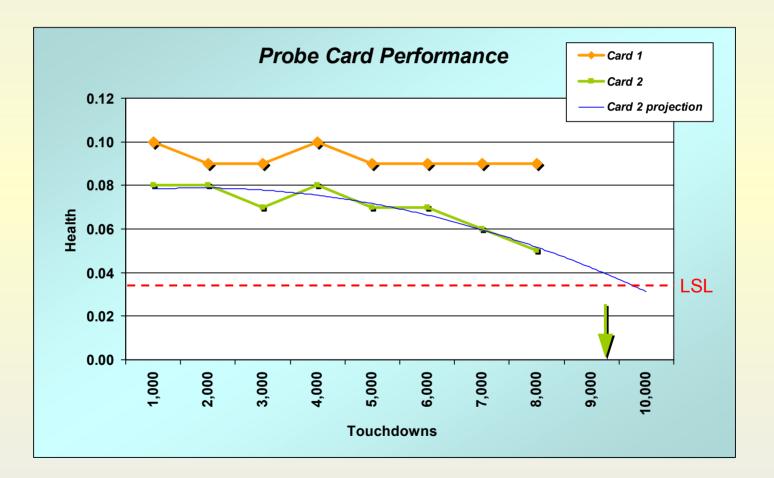
- What Trends Can We Expect?
 - Gradual Process Variations
 - PTPA drift
 - Probe card lifecycle; cleaning, wear, repairs
 - Abrupt Events
 - Equipment failure
 - User intervention
 - Fab lot issues
- Validation Study:
 - Manually trend data from existing, installed waferWoRx tool:
 - Wafers must come from same prober and probe card

Probing Process Variation

AppliedPrecision 19 Enabling the world's core technologies

Wafer Tracking

- System needs to know which prober and probe card were used on each wafer analyzed:
 - Can be obtained through test floor network more desirable
 - Can be entered manually by operators less desirable



Lag Time

- Process control benefit decreases as Lag Time Increases
 - Problems persist while test cell impacts yield
 - Sub optimal scheduling of probe card repair increases cost
 - Slower time-to-data adds delay to setup validation
- Ways to reduce effects of Lag Time
 - Measure probe marks immediately after they're created
 - Measure and analyze them quickly
 - Allow (and prompt for) job priority scheduling

Prober Networking and Trend Prediction

In-Situ PMI Analysis

- Best way to defeat lag time is to monitor while probing:
 - Cannot reduce test cell throughput too costly
 - How to do this on a prober without affecting wafer throughput? No easy solution
- Next best way is to monitor immediately downstream from test cell:
 - Must be on production floor
 - Minimize operator workload

Conclusions

Conclusions

- The need for probing process control continues to escalate
- Inline probing process analysis is feasible:
 - It leverages proven tools
 - It can be combined with inspection for added value
- Benefits:
 - Data when you need it where you need it
 - Higher test cell utilization
 - Higher yield

Acknowledgements

- The following contributors helped make this presentation possible:
 - Jim Andersen Applied Precision
 - Jon Heine Applied Precision
 - Jeff Hintzke Electroglas
 - Darren James Electroglas
 - John Goulding Consultant

