

A Computer-based Probing C.O.O. Model

SOUTHWEST TEST WORKSHOP JUNE 2003

A Computer-based Probing C.O.O. Model

Oliver Nagler Gavin Gibson

Infineon Technologies AG Corporate Test - Probing Technologies Munich, Germany

A Computer-based Probing C.O.O. Model Outline

- Total Cost of Ownership
- COO as part of IFX Probe Card Selection Tool
- Cost Elements
- Computer-based Probing COO Tool
- Vendor Cost Model Parameters
- Calculation Parameters
- Probe & Test time related costs
- Volume trend analysis
- Examples
- Multi-DUT trend analysis
- Contributing factors

- COO is used to support decisions involving computing systems, laboratory, testers and manufacturing equipment, for instance.
- Calculates total costs over a specific time period
- Includes the 'hidden' costs, e.g. maintenance, cleaning, yield, and installation
- Provides the tool to assess and manage the cost impact of changes in technology, sourcing and support strategies

Oliver Nagler

A Computer-based Probing C.O.O. Model **TCO Lifecycle**

A Computer-based Probing C.O.O. Model **Probing COO Lifecycle**

SOUTHWEST TEST WORKSHOP **JUNE 2003**

A Computer-based Probing C.O.O. Model Probe Card Selection Tool (PCST)

SOUTHWEST TEST WORKSHOP JUNE 2003

A Computer-based Probing C.O.O. Model Cost Elements

A Computer-based Probing C.O.O. Model Process Flow

SOUTHWEST TEST WORKSHOP JUNE 2003

A Computer-based Probing C.O.O. Model COO as MS-EXCEL Tool

SOUTHWEST TEST WORKSHOP JUNE 2003

A Computer-based Probing C.O.O. Model Product & Probing Parameters

SOUTHWEST TEST WORKSHOP JUNE 2003

Parameter	Unit	Value				
Product Specification						
Internal Product Name	-	M1234				
Die contact	-	WB				
Pad thickness / Bump height	μm	1000				
Bump Diameter	μm	-				
Pad / Bump material	-	Al				
Pad layout	-	peripheral				
Dies per wafer	-	800				
Die length	mm	6.00				
Die width	mm	5.00				
Min. Pad pitch	μm	90				
Pad length	μm	70				
Pad width	μm	70				
Probing Parameters						
# of pads contacted	-	200				
Test temperature (Max)	°C	25				
Maximum current (continuous)	mA	100				
Maximum current (peak)	mA	200				
Bandwidth	MHz	100				
No. of low speed RF lines (<3Gl	-	0				
No. of high speed RF lines (3 - 1	-	0				
No. of components req'd on the	-	0				

A Computer-based Probing C.O.O. Model Operating & Productive Data

Operating Data							
Tester model	-	J971					
Prober model	-	UF200					
Test Category	-	digital					
# of DUT's	-	2					
Test time per die	S	2.5					
# of wafers per lot	-	25					
Productive Data							
Product life cycle	weeks	60					
Total # of good die	-	7,000,000					
Expected yield	%	90%					
Cost of wafer (processing)	\$	2000					
Ave. # of probers per operator	-	5					
Prober operator cost per hour	\$	20.00					
Pcard technician cost per hour	\$	40.00					
Ave. cost of tester time per seco	\$	0.05					
Wafer inspection, points per wafe	-	3					
Wafer inspection, time per point	S	30.00					
Tester working time per week (h	h	120					

SOUTHWEST TEST WORKSHOP

JUNE 2003

Infineon Technologies AG

Oliver Nagler 2003-06-04 Page 12

A Computer-based Probing C.O.O. Model Vendor Cost Model

SOUTHWEST TEST WORKSHOP JUNE 2003

Quantity Discount Total initial probe card	3% 1'596 51'604	
PCB	2'500	
Probe Head	1'500	
NRF (one-time)		
Sub-total Order Volume	4 x 12'300	
Basic Charge (Std./custom design)	4'000	
PCB		
Price per Components (Type)	100 x 10	
Price per RF-line (low-/high speed)	100 x 8	
Price per Pin (Pitch, quantity)	30 x 150	
Basic Charge (Type, Size, no. of DLIT's Test Temp Die Size)	2'000	Cost-effective Probing Solution
Probe Head	· · ·	Vendor Cost Model ROI
Technology A / B / C Vendor x / y	Example (in US\$)	Microsoft® : EXOEL Input Sheet Product Spec Parameter Data Productive Data

from page 12 Initial probe card costs **Total purchase cost** = Backup Capability = Depending on Technolgy Probe card rebuild cost Offline maint. cost **Tester set-up cost Online cleaning cost Reprobe cost**

Microsoft® - EXOFI Input Sheet Probing Operating Productive Produc Data Data Paramotor Calculation Vendor Cost Model Cost-effective obing Solution

= n cycles x Material + Labor costs

= n setups x Labor + Tester costs

= n cleaning cycles x Labor + Tester costs

= n reprobed dies x Labor + Tester costs

Input Sheet

Calculation

ROI

Operating

Data

Productive

Data

Cost-effective Probing Solution

Probing

Paramotor

Microsoft® - EXOFI

Produc

Spec

Vendor Cost Model

- Mechanical yield loss
 - due to pad damage
- Relative electrical yield loss
- Probe related Costs
 +
- Cost of test time

- = Summation of all Pcard related costs
- = n die x Tester costs / # of DUTS

= good dies rejected

Total Probe Costs

= Summation of Tester and Probe Cost

A Computer-based Probing C.O.O. Model Total Probe Cost

SOUTHWEST TEST WORKSHOP JUNE 2003

A Computer-based Probing C.O.O. Model Probe Related Cost

SOUTHWEST TEST WORKSHOP JUNE 2003

A Computer-based Probing C.O.O. Model Volume Trend Analysis

Infineon Technologies AG

2003-06-04 Page 18

Oliver Nagler

A Computer-based Probing C.O.O. Model Example 1

SOUTHWEST TEST WORKSHOP JUNE 2003

Low pin count (50)

Low volume (2 Mio.)

- 1-DUT
- Target Yield 85%
- RF-pins
- Short test time (2sec.)
- Cres-related Yield loss
- Max. Retest rate 5%

A Computer-based Probing C.O.O. Model Example 2

- High pin count (200)
- High volume (>10 Mio.)
- 4-DUT
- Target Yield 95%
- No RF-pins
- Long test time (6sec.)
- No Cres-related Yield loss
- Max. Retest rate 3%

A Computer-based Probing C.O.O. Model Multi-DUT trend analysis

SOUTHWEST TEST WORKSHOP JUNE 2003

Test costs per die

A Computer-based Probing C.O.O. Model Contributing Factors

SOUTHWEST TEST WORKSHOP JUNE 2003

- Probe Card Investment
- Probe Card Lifetime
- Cleaning
- Maintenance
- Test time
- Yield/Retest Rate
- Parallelism

Application Specification

A C.O.O. model applied to probe cards

can determine the most cost effective solution