

"A Statistical Method for Eliminating False Counts Due to Debris, Using Automated Visual Inspection for Probe Marks"

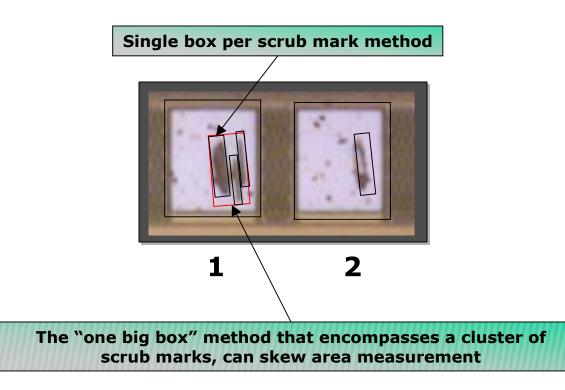
> SWTW 2003 Max Guest & Mike Clay August Technology, Plano, TX

 Probe Debris & Challenges to Automated Inspection

 Statistical Probe Mark Area Filter

 Statistical Probe Mark Proximity Filter

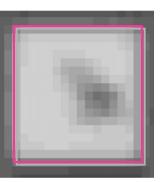
Wafer Probe Quality Control


- Quality control of the wafer probe scrub area (probe mark) is required to:
 - Ensure probe mark area is sufficient for proper forming of intermetallics during wire bonding.
 - Detect cracked passivation oxide outside the bond pad area.
- Traditionally, manual inspection, which relies on sampling by human operators, has provided this control.
- Currently, more test floors are using automatic inspection to allow 100% inspection and remove operator to operator variability.

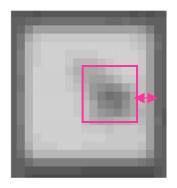
Manual Probe Mark Inspection

Operator uses a microscope review station to:

- 1. Estimate probe damage area with one or more rectangular reticles
- 2. Determine if the probe mark violates the boundary of the bond pad



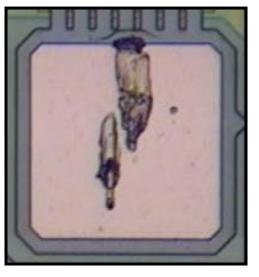
Automatic Probe Mark Inspection


Pixel Analysis

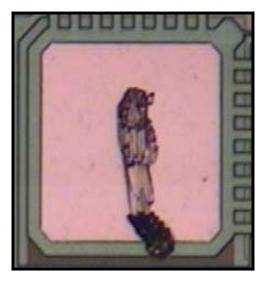
1. Edge search begins where bond pad masks are defined during recipe set-up

- 2a. Actual bond pad edges detected by pixel analysis
- 2b. Bond pad area calculated

- 3a. Dark pixels inside bond pad edges counted to calculate area (as % of total bond pad area - or - in um²)
- 3b. Pixels from probe mark edge to nearest bond pad edge counted to calculate **proximity** (in um)



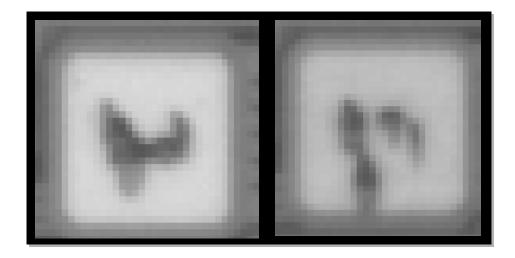
The Probe Mark Debris Challenge


Debris is:

- A natural product of the probing process.
- Considered non-critical to device functionality

Automatic probe mark inspection systems have difficulty differentiating between defects and debris.

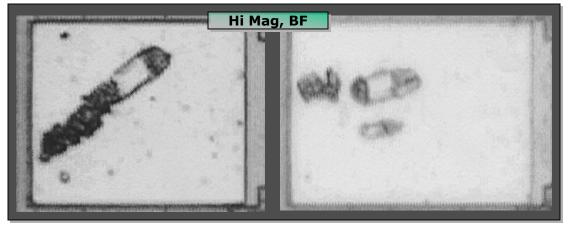
Real Probe Mark Edge Excursion


Aluminum Slag/Debris

Automatic Probe Mark Inspection for Debris

- Machine vision algorithms, using low magnification images, are not effective for distinguishing debris from probe marks.
 - At low mag, there are not enough pixels to provide enough gray scale information.

These images show low mag (3 um/pixel resolution) images of pads w/ possible size and proximity defects. It is impossible to tell whether debris is present or not.

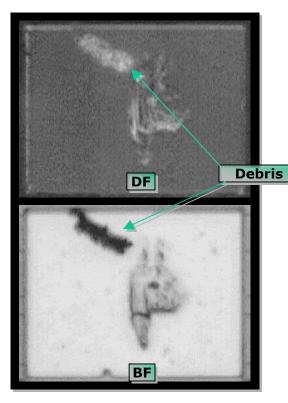


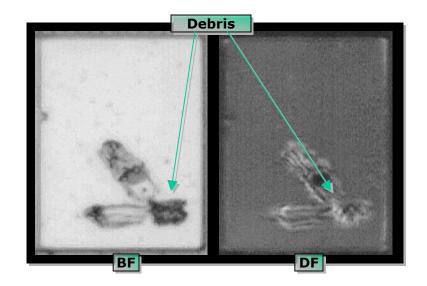
Machine Vision-Based Debris Filter

Machine vision algorithms for differentiating debris from actual probe marks are difficult to create.

- Simple techniques based on color or brightness suffer from lack of robustness.
- Complex techniques based on shape and texture are slow and difficult for the user to tune.
- High magnification is needed, requiring a second inspection pass and reduced throughput.

Debris displays different visual characteristics


Debris is very dark & easy to distinguish from probe mark


Debris is much lighter & very similar to probe mark

Machine Vision-Based Debris Filter

Lighting techniques such as dark field illumination are generally unreliable for this type of detection.

- DF image (upper left) reflects light from debris, distinguishing it from probe mark.
- DF image (above) does not reflect light from debris, cannot distinguish debris from probe mark.

Statistical Debris Filter

Premises

1. Wafer probing excursions occur in a systematic manner as opposed to a random manner.

2. A statistical method of separating random (false) probing defects from systematic (true) probing defects can be used.

Based on these premises, two statistical debris filters were developed.

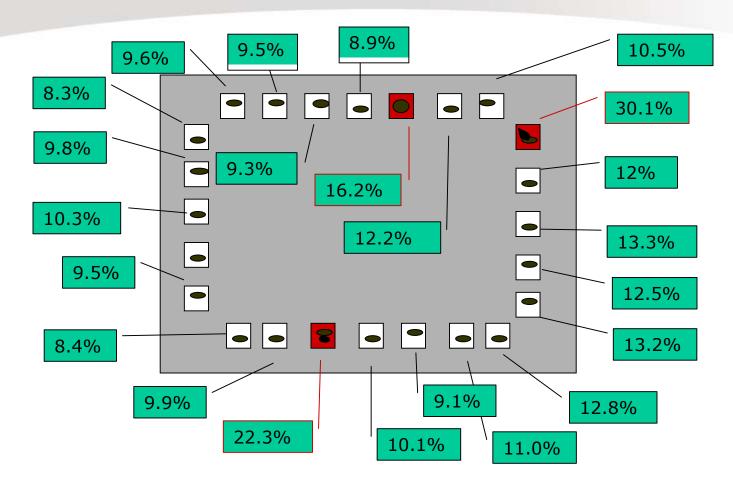
- Probe mark area debris filter
- Probe mark proximity debris filter

Probe Debris & Challenges to Automated Inspection

- Statistical Probe Mark Area Filter
- Statistical Probe Mark Proximity Filter

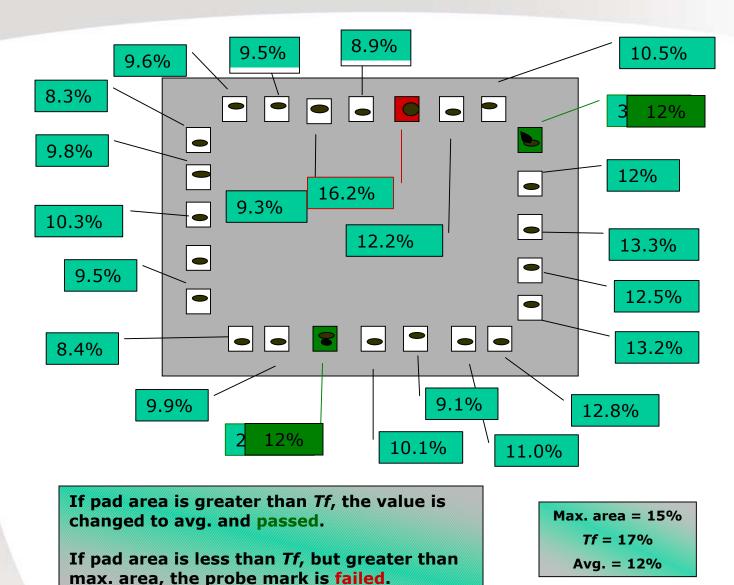
Assumptions Made

- All bond pads on one die have been subjected to the same number of touchdowns.
- There are five (5) or more bond pads on one die.
- Actual probe damage area will not differ in a statistically significant manner within one die.

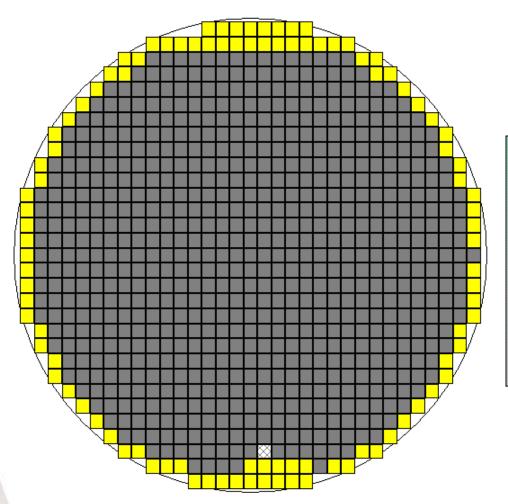

Probe Debris Filter

Statistical Probe Mark Area Filter

Probe M Min Are	nspection Settings— ark Size a (% of bond pad) ea (% of bond pad)	AVI Mag 0 0	High Mag 0	Bond Pad Discoloration Test for Discoloration Minimum Pad Brightness 200 Maximun Pad Brightness 255
- Probe M	ark Edge Proximity-	AVI Maq	High Mag	Probe Mark Detection Algorithm Global Thresholding (Heavily probed)
Edge F	Proximity (microns)	0	0	C Local Thresholding (darker pad)
Probe M	ark Sensitivity			Debris Filtering (for Probe Mark Area)
		AVI Mag	High Mag	Enable Filter
	ensiti∨it∨ e grain metal)	0	•	Standard Deviations 2
Norma	al Sensitivity	۲	۰	
	ensitivity Probe Marks)	0	•	When enabled, this function determines the threshold filter (<i>Tf</i>) for each die. <i>Tf</i> = Avg. (% area) + (x * Std. Dev.) (where x is defined by user)

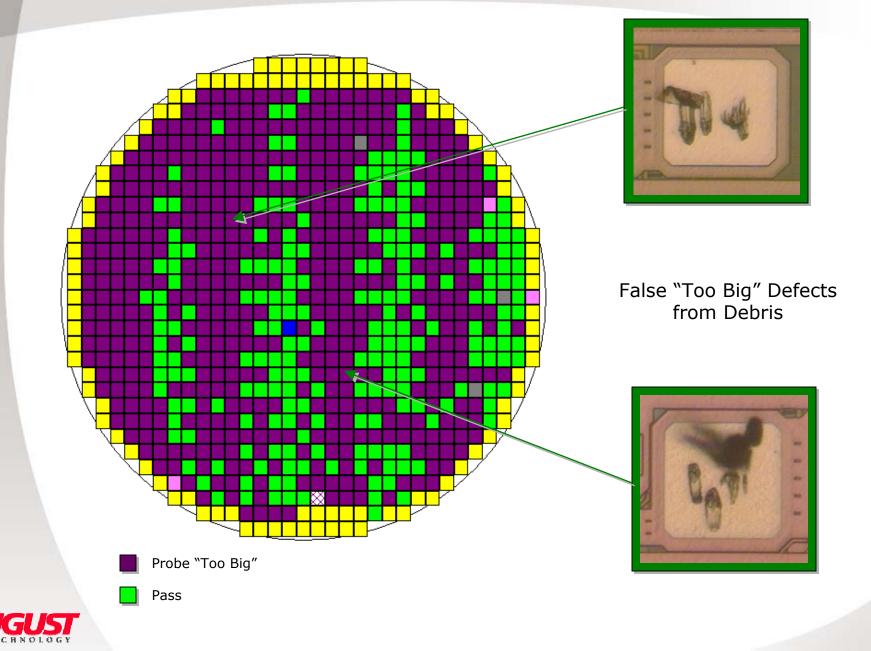

Probe Mark Area Inspection Without Filter

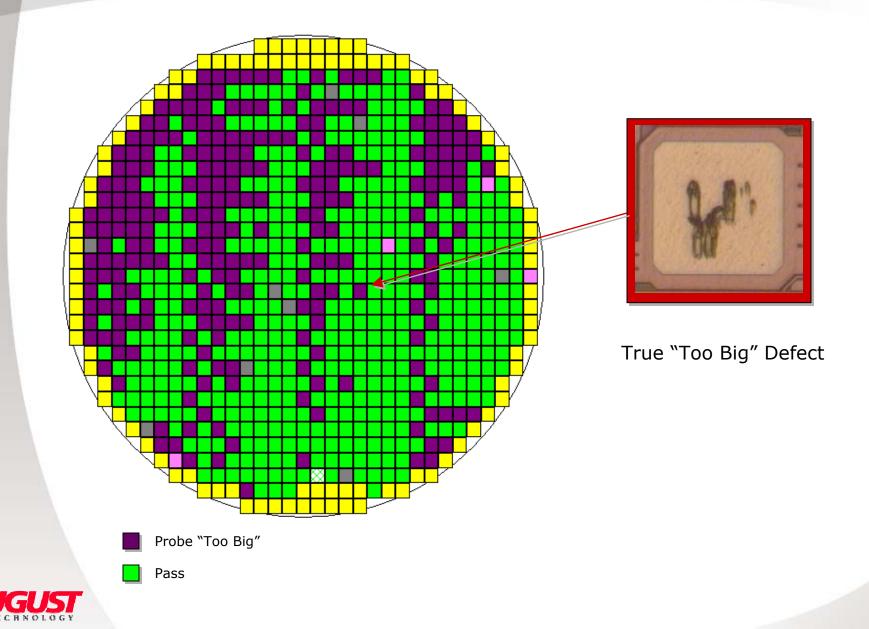
Probe Mark Area Inspection With Filter

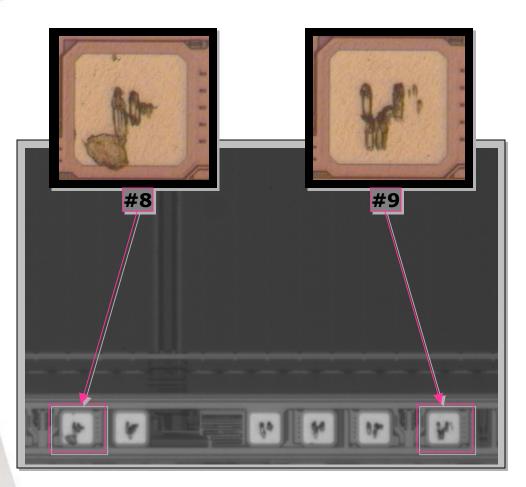

Standard Deviations vs. Performance

ond Pad	No Filter	<u>2σ Filter</u>	<u>3σ Filter</u>	<u>4σ Filter</u>	
1	9.60	9.60	9.60	9.60	Average PM Damage % 11.9913
2	9.50	9.50	9.50	9.50	Std Deviation of PM Damage % 4.900919
3	9.30	9.30	9.30	9.30	
4	8.90	8.90	8.90	8.90	Debris Filter 2 Std Deviations 21.79314
5	16.20	16.20	16.20) 16.20	Debris Filter 3 Std Deviations 26.69406
6	12.20	12.20	12.20	12.20	Debris Filter 4 Std Deviations 31.59498
7	10.50	10.50	10.50	10.50	
8	30.10	11.99	11.99	30.10	
9	12.00	12.00	12.00	12.00	
10	13.30	13.30	13.30	13.30	Choice of Std. Dev. will affect the performa
11	12.50	12.50	12.50	12.50	of the Area Debris Filter:
12	13.20	13.20	13.20	13.20	
13	12.80	12.80	12.80	12.80	- If <i>Tf</i> is too small, there is potential
14	11.00	11.00	11.00	11.00	for escapes.
15	9.10	9.10	9.10	9.10	- If <i>Tf</i> is too large, there is potential
16	10.10	10.10	10.10	10.10	for false counts.
17	22.30	11.99	22.30	22.30	
18	9.90	9.90	9.90	9.90	
19	8.40	8.40	8.40	8.40	
20	9.50	9.50	9.50	9.50	
21	10.30	10.30	10.30	10.30	
22	9.80	9.80	9.80	9.80	
23	8.30	8.30	8.30	8.30	

Parameters for Area Filter Test




Wafer size:	8-inch
Inspected die	: 713
Die size:	5897um x 6349um
Pads/die:	38
Max. area:	25%
Std. Devs:	1.1


Defect Map Without Area Filter

Defect Map With Area Filter

Pad Areas Before & After Filter

Before Filter: Pad #8 Fails Pad #9 Fails

Measurement	Die	Area %	Area um square
6	0	23.203909	1409.305542
7	0	21.484575	1314.597412
8	0	28.773952	1746.843262
9	0	25.316364	1537.989868

After Filter: Pad #8 Passes Pad #9 Fails

Measurement	Die	Area %	Area um square
6	0	23.203909	1409.305542
7	0	21.484575	1314.597412
8	0	21.993752	1746.843262
9	0	25.316364	1537.989868

Statistical Probe Mark Area Filter

Advantages

- Easy to use user only specifies filter threshold level
- <u>Fast</u> filter does not reduce machine throughput
- <u>Effective</u> debris which significantly increases the perceived probe damage area is automatically cleared
- <u>Automatically adjusts to variability of probing process</u> a well controlled process will have a lower standard deviation, resulting in a tighter debris filter threshold.

Disadvantages

- <u>Not effective for small debris</u> which does not significantly increase the probe damage area but does occlude the bond pad edge. This can create false probe mark position rejects.
- <u>May cause escapes</u> if one probe needle creates a significantly larger damage area than other probe needles.

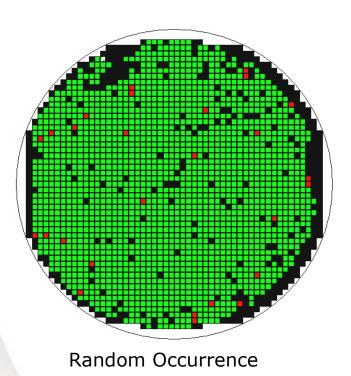
Probe Debris & Challenges to Automated Inspection

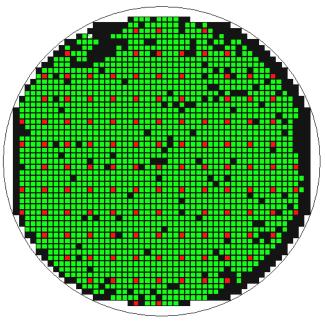
Statistical Probe Mark Area Filter

• Statistical Probe Mark Proximity Filter

Assumptions Made

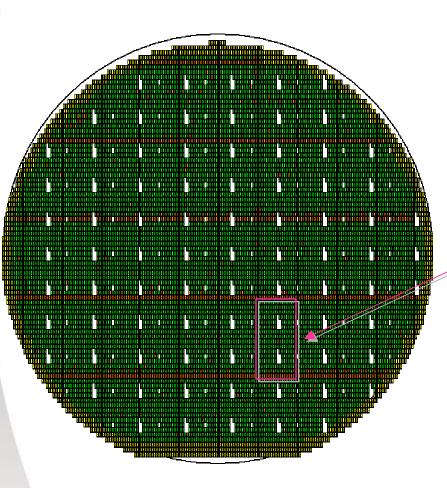
- The probe mark created by a particular probe needle will not vary significantly in size or position within a small index distance on the wafer.
- A large variation in probe mark position or size within a small index distance on the wafer is caused by debris.



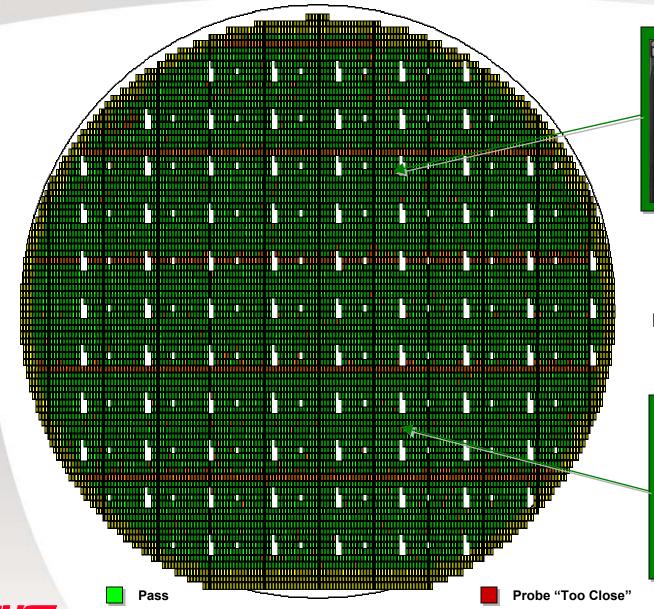

Software algorithm compares die to "adjacent" die of same probe site based on probing configuration.

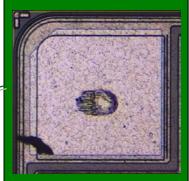
<u>m^CCTI Map Editor - (UPP4MG cmp)</u>			_ 8 ×
			-
<u>S</u> ave Save <u>A</u> s			
Import Prober Test Sites		Bond Pad Debris Filter	- 1
P <u>r</u> operties Rename <u>D</u> evice <u>P</u> rint	Ctrl+P	Enable Bond Pad Debris Filter OK Max. Rate of Drift (u/mm) 0 Max. Rate of increase or decrease in size (%/mm) 0	
E <u>x</u> it		Neighborhood distance limit (mm)	- 1
Sample Die: 0 Row: 2 Cot 8 Die Types Key Dies C Testable First Die C Edge Reference Die C Plug Non-Chip Sample Die	Assign Probe Probe Test S		
Colors ▲ Non Chip Testable Die 5 sample Die - Phyp Die - Dinforom Uninforom Churren Die ✔ For Help, pres F1 Statt Statt sit Statt	A Exploring - N \icema		NUM 2:54 PM

- If the defect is caused by a needle error, it will occur in the probe configuration pattern across the wafer
- If the defect is caused by slag/debris, it will be a random occurrence and will not match the probe mark signatures of the adjacent die of the same probe site

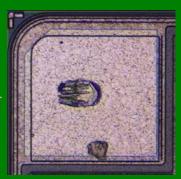


4,4 Probe Configuration Pattern

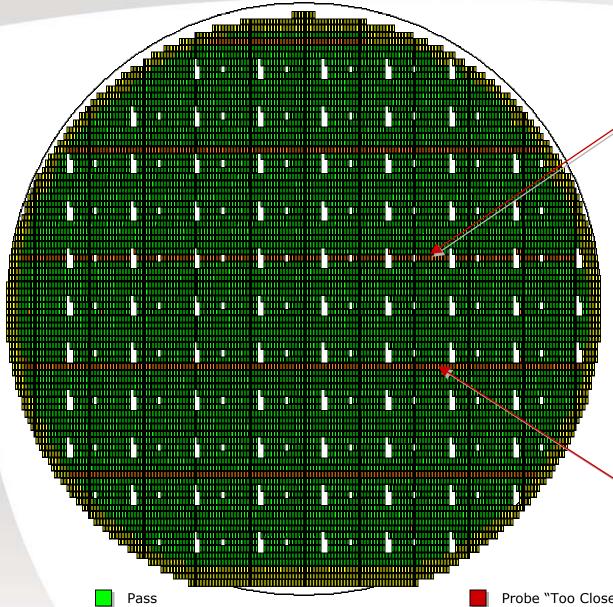

Parameters for Proximity Filter Test

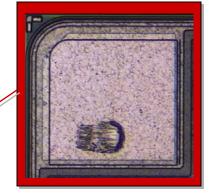


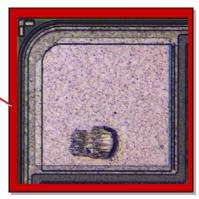
Wafer Size:	6-inch		
# of Inspected Die:	11633		
Die size:	762um x 1702um		
Edge Proximity:	15um (inside edge)		
Probe Test Site:	16		
Max. Rate of Drift:	1um/mm		
Max. Rate of Increase/decrease: 1%/mm			
Neighborhood Distance Limit: 30mm			



Defect Map Without Proximity Filter




False "Too Close" Defects from Debris



Defect Map With Proximity Filter

True "Too Close" Defects

Probe Debris Filter

Probe "Too Close"

Advantages

- <u>Fast</u> filter does not reduce machine throughput
- <u>Effective for large and small debris</u> debris which does not significantly increase the probe damage area but does occlude the bond pad edge is automatically cleared based on position variation.
- <u>Does not cause escapes</u> if one probe needle creates a significantly larger or out of position mark compared to other probe needles.

Disadvantages

- <u>More difficult to set-up than area filter</u> requires test site information to be imported from prober map file or manually entered.
- <u>Not easily implemented</u> for wafer probing processes which use multiple probing steps and multiple probe card configurations.
- <u>Not statistically accurate</u> if very large-array probing patterns are used (i.e., 4 – 6 touchdowns per wafer).
- <u>Random sampling</u> may not work with this filter if the sample plan is too sparse.

Acknowledgements

- These data were generated on a WAV 1000 Sprint automated inspection system.
 - Magnifications for inspections before & after debris filter were at 3µm/pixel for Area Debris, 5µm/pixel for Proximity Debris.
 - Algorithms used for statistical debris filtering are present on the WAV 1000 Sprint in the software option "Probe Debris Filter" (PDF)

WAV 1000 Sprint

4900 West 78th Street Bloomington, Minnesota 55435 Tel: (952) 820-0080 sales@augusttech.com www.augusttech.com