Performance of a Next Generation High Speed, High Precision, Probe Card Analyzer

Jeffrey S. Greenberg Raymond Kraft, Ph.D. Applied Precision, LLC

South West Test Workshop 4 June 2003 Long Beach, CA USA

Presentation Agenda

- Motivation for next generation PCA
- Problems with conventional PCAs
- probeWoRx next generation PCA
- probeWoRx Benefits
- probeWoRx Results

Motivation

- Ever increasing need to test more devices simultaneously
- Probe card pin counts and loads increasing
 - Advanced Technology Cards with > 10,000 probes
- Test Time
 - Need to keep test times acceptable
 - Minutes, not hours
- Accuracy
 - Increased loads cause structural deflection and degrade accuracy
 - Tighter probe pitch and smaller pads require higher accuracy

- Electrical Planarity: Non-Bussed Probes
 - FAST
 - Scan checkplate in Z
 - Continuity measurement at each Z step
 - Accuracy based on stage position

4

Enabling the world's core technologies

- Electrical Planarity: Bussed Probes
 - SLOW!!
 - Isolated contact driven individually to each probe
 - Scan contact in Z
 - Continuity measurement at each Z step
 - Accuracy based on stage position
 - Isolated contact will wear and accumulate dirt/debris

- Optical Alignment
 - SLOW!!
 - Each probe set driven individually to optical window
 - Measure XY position at zero and nominal overtravel
 - Accuracy based on stage position
 - Optical window will wear and accumulate dirt/debris

- Drawbacks to Conventional Planarity and Alignment Measurements
 - SLOW!!
 - Measurement results directly related to stage accuracy and repeatability
 - Measurement results degraded by dirt/debris accumulation at isolated contact/window
 - Measurement accuracy is also sensitive to
 - Abbe Error
 - Deflection under load
 - Temperature changes

probeWoRx

Next Generation Probe Card Analyzer (beta system)

8

probeWoRx Capabilities

- NEW Optical Planarity and Alignment
- Electrical Planarity
- Leakage
- Contact Resistance
- Capacitance
- Electrical Components (capacitors, resistors)
- Wirechecker
- Probe Force
- Cleaning
- Rework

probeWoRx New Metrology Technique

- 3D Optical Comparative Metrology (3D-OCM)
 - Compute **both** planarity and alignment from optical measurements
 - Measure probe locations relative to NIST traceable measurement standard
 - Extremely flat measurement standard (< ¼ wave)
 - Extremely accurate photolithographically-defined fiducial grid (< 0.5um)
 - Measurement standard and probes are co-located
 - Multiple patents pending

3D-OCM: Measurement Concept

Enabling the world's core technologies

3D-OCM: Measurement System

3D-OCM: Example Probe Images

MicroSpring™

					4				
					0				

Cantilever

											•
											•
											•
											•
											•
											•
	- 1	0		•		•	1		2		•
							Ξ.				•
											•

Vertical

Blade AppliedPrecision Enabling the world's core technologies 13

3D-OCM: Continuous Scan

- Continuous One-Touch Scan
 - Up to 300mm diameter probe array

Enabling the world's core technologies

14

3D-OCM: Benefits

HIGH SPEED

- Fast continuous motion scan of ALL probes
 - Measurement times not slowed down by relays or capacitors
 - Same measurement for bussed & non-bussed probes
- Scan probes at available image capture rates
 Example: Capture/process images at 10 frames/second
 - 100um pitch linear array (4 probes/capture)
 - 2,000 probes in < 2 minutes
 - 10,000 probes in < 10 minutes
- Electrical measurements can be made in parallel with planarity and alignment measurements

3D-OCM: Benefits

ACCURACY & REPEATABILITY

- Accuracy dependent on NIST traceable mask
- Measurement INDEPENDENT of stage accuracy
 - Eliminates time-consuming stage calibrations
- Measurement standard and probes are co-located
- Directly measure and compensate for system deflection
- Distributed measurement surface less sensitive to wear and dirt/debris
- Improved Gage R&R results reproducibility approaching repeatability

Planarity and Alignment Test Times

Probe Tip Technology	Total Probes	Array Size (mm)	Total DUTs	PR Test Times (hours)	probeWoRx Test Times (minutes)
Vertical	2596	42 x 61	64	1:43	6
Microspring	6720	98 x 91	194	4:18	22
Cantilever	4480	111 x 45	64	1:22	7

Undisturbed and Disturbed Repeatability (3 sigma) Cantilever Probe Card

18

Undisturbed and Disturbed Repeatability (3 sigma)

Microspring[™] Probe Card

19

Enabling the world's core technologies

X Error Repeatability, Undisturbed

Probe ID

Y Error Repeatability, Undisturbed

Probe ID

Planarity Repeatability, Undisturbed

AppliedPrecision 22 Enabling the world's core technologies

Planarity with no load

Electrical Planarity

3D-OCM

Probe card/fixture deflection measurement

Enabling the world's core technologies

Loaded Optical Planarity

Measurement of Cobra probe tip planarity in free-hanging position for prober correlation

AppliedPrecision 26 Enabling the world's core technologies

Measurement of Cobra probe tip "float"

Summary

- Wafer test roadmap demands faster, more accurate metrology
- probeWoRx 3D Optical Comparative Metrology offers significant advantages over current metrology techniques
 - >1 order of magnitude improvement in speed
 - Greater accuracy
 - Higher degree of repeatability and reproducibility
 - Improved machine-to-machine correlation
 - New measurement capabilities

