Test System Requirements For Wafer Level MRAM Test

Raphael Robertazzi IBM/Infineon MRAM Development Alliance

With Acknowledgement To Cascade Microtech Inc. And Temptronics Inc.

SWTW-2004

6/07/04

Page [1]

Outline

- Brief Introduction To MRAM Technology.
- MRAM Specific Test Challenges For Analytical Test.
- Brief Review Of Magnetism.
- YKT Analytical MRAM Test System.
- Experiments: Magnetic Characterization Of Summit 12K Probe Station With Thermal Chuck.
 - Ambient Field, With And Without Temperature Control.
 - Field With Applied Magnet.
 - AC Field Characterization.
 - Degaussing Experiments.
 - Conclusions.

What Is MRAM?

Page [3]

Page [4]

FET Cell Architecture

6/07/04

Robertazzi / SWTW-2004

Page [5]

Write Selection

Robertazzi / SWTW-2004

Page [6]

Analytical Test System Requirements

- Digital Tester With Highly Flexible Test Pattern Capability.
- High Bandwidth Connections To The DUT.
- Low Level Of Electrical Noise.
- Mixed Signal Capability.
- Temperature Control.
- "Magnetics Package" (Experiments)
 - Ability To Apply Arbitrary Magnetic Fields In The Plane Of The Wafer.
 - Magnetically Characterized Chuck, $B_A < 1$ G.

Magnetism Basics

Page [8]

Permeable Materials Disturb Applied Fields

Robertazzi / SWTW-2004

Page [9]

MRAM YKT Test System

Robertazzi / SWTW-2004

MRAM Probe Card

Robertazzi / SWTW-2004

Page [11]

*Magnet

One Set Of Windings

Two Sets Of Windings In Opposition

* IBM Almaden Research Center

6/07/04

Robertazzi / SWTW-2004

Page [12]

Chuck Characterization

- 1. Remnant Field Experiments (H = 0). *Focus On Variation Of In Plane Fields*. [Static (DC) Measurements.]
 - Thermal Chuck Off.
 - Thermal Chuck On.
 - T = 25 C, Scalar And Vector Measurements.
 - T = 40 C.
- Field Measurements With Applied In Plane (H > 0).
 Focus On Search For Highly Permeable Magnetic Materials In The Chuck. [Static (DC) Measurements.]
 - Thermal Chuck Off.
- AC Field Measurements (H_A = 0) For Different Temperature Set Points. Focus On Current Induced Fields.
 - Thermal Chuck Off.
 - T_{Set Point} = 25 C.
 - T_{Set Point} = 200 C.

Chuck Characterization

- 4. Remnant Fields Revisited.
 - Focus On Absolute Remnant Field Measurements, Remnant Fields After Application Of Large Magnetizing Force. [Static (DC) Measurements.]
 - Absolute Field Away From The Chuck.
 - Absolute Field Near Center Of Chuck And Aux Stage.
 - Degaussing Experiments.

Chuck Magnetic Characterization Set Up

• Chuck Is Scanned In X &Y, Scan Step 2.5 mm.

6/07/04

Robertazzi / SWTW-2004

Page [15]

Ambient Magnetic Field Of Chuck

Ambient Field, (Hx = Hy = 0), Thermal Unit Off

Response To Applied Field

Applied Field, (Hx = 0, Hy = 19.9 Oe), Thermal Unit Off

6/07/04

Robertazzi / SWTW-2004

Page [17]

Ambient Magnetic Field Of Chuck Ambient Field, (Hx = Hy = 0), Thermal Unit On, T = 25C 10 В_ф (G) 0.400 8 0.4250.4500.4750.500Y Position 0.5256 -0 550 0.5750 600 0.625 4 0.650 0 675 Variation < 0.3

G Away From Aux Chucks 2 2 4 6 8 X Position

Page [18]

10

0.850

0.875 0.900

Robertazzi / SWTW-2004

6/07/04

6/07/04

Robertazzi / SWTW-2004

Page [19]

6/07/04

Robertazzi / SWTW-2004

Page [20]

Vector Field Plot Ambient Magnetic Field Of Chuck (Thermal Unit On, Ts = 25C)

Ambient Field Very Constant Both In Magnitude And Direction

6/07/04

Robertazzi / SWTW-2004

Page [21]

Vector Field Plot Applied Field (Hx = 0, Hy = 19.9 Oe) (Thermal Unit Off)

Almost No Distortion Of Applied Field Magnitude Or Direction Near Studs

Robertazzi / SWTW-2004

Page [22]

AC Magnetic Field Characterization (Center Of Chuck)

Thermal Chuck Off Thermal Unit On, Thermal Unit On, $T_{Set Point} = 25 C$ $T_{Chuck} = 25 C$ No Differences Observed

6/07/04

Robertazzi / SWTW-2004

Page [23]

Degaussing Procedure

Robertazzi / SWTW-2004

Page [24]

Degaussing Experiments

Measure Baseline Fields

- 1. Zero Probe In Zero Gauss Chamber.
- 2. Read Field In Lab Far From Probe Station: |B| = 0.34 G.
- 3. Read Field At Center Of Chuck: |B| = 0.35 G.
- 4. Read Field Near Aux Chuck: |B| = 0.35 G.

<u>Apply Hy = 250 Oe And Measure Remnant Fields</u>

- 1. Read Field At Center of Chuck: |B| = 0.45 G. (Remnant Magnet?)
- 2. Degauss And Read Field At Center Of Chuck: |B| = 0.44 G.
- 3. Read Field Near Aux Chuck: |B| = 0.85 G.
- 4. Degauss And Read Field Near Aux Chuck: |B| = 0.5 G.

Application Of Large Fields Produced Some Remnant Offsets, Which Can Be Reduced By Degaussing.

Conclusions

- Summit 12K Demonstrated Excellent Magnetic Performance For Demanding Analytical Studies Of MRAM Devices.
- Best Magnetic Performance Observed Near The Center Of The Chuck.
- Aux Stages Perturbed Applied Fields And Had Remnant Offsets, But The Stages Can Be Easily Removed Or Replaced With Parts Made From Non-magnetic Materials.
- Turning Thermal Unit On Did Not Significantly Degrade Magnetic Performance.
- Negligible AC Fields Detected.