"Vertical Goes Power":

Multi-Site Wafer Probing of Automotive ICs

Rainer Gaggl, Ph.D. T.I.P.S. Messtechnik GmbH, Austria in cooperation with PROBEST, France

SWTW, June 2004

- The D.U.T.: Power/Logic devices for automotive applications
- Cantilever Probes
- Vertical Probes ?
- Thermal Modelling of Interposer, Probes, Bond Pad
- Probes Protection / Current Limiting
- Example Probecard
- Conclusion

The D.U.T.

Automotive ICs can be characterized by:

- Logic circuitry combined with power outputs
- Pulsed current on high power outputs: 3-15 A,1 ms, multiple outputs on one IC
- Pincount: approx. 50-200 pins, pad pitch: 100 µm and more
- Sometimes irregular pad layouts with inner lying pads
- Wafer testing by now:
 - Cantilever probecards mostly in single die Configuration, varying tip diameters to adapt to high Current demands

Cantilever Probe Card

Fig. 1: Example of pad and cantilever probes layout for Automotive IC: 14 different probes types, 2 different tip diameters

Multi-die testing ???

Vertical Probe Card ?

Common idea: vertical buckling beam cards are not suitable for high power applications, but....

- Same probe materials used for cantilever and vertical probes...
- Contact areas and conducting areas comparable to cantilever configuration
- ...so why not ?

Tip diameter 40 µm _____ Contact area 25 µm _____ Fig. 2a: typical cantilever probe

Thermal Modelling (1)

High Current paths: Where is the "fuse"?

Probe Beam ?, Probe Tip ?, Interposer ?

Analytical model of probe and interposer trace: calculate electrical heating during a short pulse (< 1 ms) to determine maximum current and pulse duration :</p>

$$\Delta T = \frac{j^2 \cdot \rho_{el}}{c \cdot \rho_m} \cdot$$

 $\Delta T...temperature / K$ j ... current density / A/m² $\rho_{el} ... resistivity / \Omega \cdot m$ $\rho_m ... density / kg/m²$ $c ... specific heat / J/(kg \cdot K)$ t ... pulse duration

Trace / Probe Heatir	ıg
for 1,5 A / 1 ms pulse	
trace heating [K]	
1,	76
probe heating [K]	
4	,4
probe tip heating [K]	
1	77

Equ. 1: formula and calculation results for electrical probe and interposer trace heating

Thermal Modelling (2)

Model of bond pad - electrical heating:

Fig. 3: model of current flow in probe and bond pad

Thermal Modelling (3)

From analytical model: derive equations for current densities in bond pad

Equ. 2: distribution current density in bond pad layer

Thermal Modelling (4)

Numerical calculation of electrical heating of bond pad

Fig. 4: graph of temperature distribution in bond pad

Conclusions from Thermal Modelling

- Limiting factor for short current pulses is not the probe, but the heating of the bond pad
- Vertical probe card design: interposer traces stay cooler than probes, in case of continuous (DC overload), the probe will burn, not the interposer
- Short overcurrent pulses will not damage probes initially, but cause the bond pads to melt around the circumference of the probe tip -> overcurrent protection needed

"Experimental" verification

Melting phenomena on high current probe contacts (cantilever probes)

Fig. 5: molten bond pad due to overcurrent spike, probes still O.K. !

Probe Current Limiting (1)

Boundary Conditions":

- "Transparent" to Tester
- No influence on test results within probing range of currents

this implies:

- Low resistance of clamping circuitry withing nominal test currents, high resistance only when clamping
- Electrically "floating" with respect to tester current supplies

Probe Current Limiting (2)

Fig. 6: Electrical characteristics of "SmartClamp" module

Fig. 7: "SmartClamp" module

The Test Vehicle (1)

Infineon airbag controller:

- 8 power outputs (3 A), 16 power pads
- dual die configuration
- 96 A total current on power pads
- 32 electrically independent clamping circuits on probecard
- 172 probes
- Cantilever probecard available for comparison

The Test Vehicle (2)

A DE LA DE L

Fig. 8a: probe head and high current MLO interposer

Fig. 8b: SmartClamp overcurrent protection on top of probecard PCB

Conclusions

- Vertical probing for power devices is feasible and shows at least equal results compared to cantilever probecards
- In pulsed high current applications the limiting factor is not the probe itself but the bond pad area around the probe impact
- Clamping unwanted current spikes by use of SmartClamp circuitry effectively protects bond pads and probes from thermal damage

Acknowledgements

Infineon Technologies Austria AG S. Zerlauth, R. Letzl, B. Moessler, F. Reinwald et al.

