Power Delivery Challenges of High Power Logic Device at Sort

Sayed Mobin (Sayed.h.mobin@intel.com)
Kevin Zhu (Kevin.zhu@intel.com)

Intel Test Tooling Operations, Intel Corporation
Agenda

- **Power Delivery Challenge**
 - 2003 ITRS Power Trend
 - Power Trend of Intel® Pentium® 4 Microprocessor
 - Probe Card Power Path
 - Microprocessor Power Distribution
 - Intel® Pentium® 4 Microprocessor Voltage Droop

- **Probe Card Power Delivery Improvements**
 - Probe Card Power Delivery Design
 - Power Delivery Improvements on Probe Card Components
 - Innovative Improvement Techniques

- **Conclusion & Acknowledgement**
Probe Card Power Delivery Challenges
Power Trend

- Voltage is decreasing, Current & Power is increasing

![Graph showing decreasing voltage and increasing current and power over time, with max currents at different years. The graph is labeled with 'I_max: 124 A' and 'I_max: 430 A', and includes a source: 2003 ITRS Roadmap.]
Intel® Pentium® 4 Microprocessor Power Trend

- Within Intel® Pentium® 4 generation power increases by 30 Watts and Current increases by 30 Amps

Source: www.tomshardware.com
Probe Card Power Path

The diagram illustrates the power path for a probe card. The ATE Power Supply is connected to the PCB, which then transfers power through the Top-side Stiffening Hardware. Contact Probes are used to connect to the DIE (DUT). The power supply is shown as a circuit diagram with components such as power supply, PCB, space x-former, probes, and Cres. The diagram also includes reference axes X, Y, and Z.
The problem

- Path inductance and resistance are the main contributors to power path voltage droop
 - L*di/dt
 - IR droop

- An Example (Impact of Contact Resistance)
 - Icc: 65 Amps
 - Cres: 0.5 Ohms per probe
 - Vcc probes: 400
 - Total Cres: 1.25 mOhm
 - IR droop=1.25x65=81.25 mV
 - Remaining Resistance will contribute to more IR voltage droop

- Failure to address power delivery challenge at sort is considered a serious risk as it could lead to undesirable or unpredictable sort results
Intel® Pentium® 4 Microprocessor
Power Map

>10x Power Delta
Non-Uniform Power Distribution

- Vcc_nominal
- Memory Area
- Core Logic Area
- 6% of Vcc

Monitor Points:
- MON1
- MON2
- MON3
- MON4
- MON5
Intel® Pentium® 4 Microprocessor Voltage Droop

1st Voltage Droop

Measured 1st Droop ≈ 16% of Vcc

Simulated 1st Droop ≈ 17% of Vcc
Intel® Pentium® 4 Microprocessor Voltage Droop

2nd Voltage Droop

Measured 2nd Droop ≈ 5% of Vcc

Simulated 2nd Droop ≈ 6% of Vcc
Probe Card Power Delivery Improvements
Traditional Probe Card Power Path Design

- **Minimize power path inductance & resistance**
 - Use power planes & Vias only for high current power path design to minimize power path L & R (no routing)
 - Reduce probe L & R
 - Reduce Space Transformer (ST) L & R
 - Reduce contact resistance between probe & wafer bump

- **Power path decoupling design**
 - For high power device, we usually have two groups of decoupling capacitors for power delivery
 - Local capacitors: on Space Transformer, closer to DUT, usually have relatively small capacitance due to space constraint
 - Bulk capacitors: on PCB with relatively large amount of capacitance
 - Adjusting decoupling capacitance to stable power supply is the traditional way of power delivery design
 - Applying low ESL & ESR capacitors
Probe Card Components Contribution to Power Delivery

Power delivery quality is measured by “Vcc Droop” or “Load Line”

Probe card components contribution to Vdroop

<table>
<thead>
<tr>
<th>Probe Card Component</th>
<th>Contribution % to 1st Vdroop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Resistance</td>
<td>23%</td>
</tr>
<tr>
<td>Probes</td>
<td>28%</td>
</tr>
<tr>
<td>Space Transformer (ST)</td>
<td>41%</td>
</tr>
<tr>
<td>Others</td>
<td>8%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>
Probe Card Power Delivery Improvements - Probes

- **Low inductance & resistance probes**
 - In recent years, some new technologies have been introduced to probing industry for making new probes for high power probe card manufacturing.
 - Most of these new probe types have smaller size, lower inductance and resistance than conventional probes.
 - Current carrying capability per probe is a concern due to smaller size.

- **Fully populated probe array**
 - May not be achievable or affordable with conventional type of probes due to smaller pitch, larger probe count & cost model.
 - Intel is doing probe depop at Sort for logic device.
 - However with innovative smaller probes, fully populated probe array will be more practical & achievable.
Probe Card Power Delivery
Improvements – Space Transformer (ST)

- **Improvements on ST**
 - Increase ST power Via count
 - Checker board Via pattern
 - Reduce ST thickness to reduce power path impedance (L & R)
 - ST thickness reduction: 150mil => 100mil => 50mil
 - ST Via inductance reduction
 - ST Via resistance reduction: proportional to Via length reduction

<table>
<thead>
<tr>
<th>Via Length (50mil pitch)</th>
<th>200mil</th>
<th>150mil</th>
<th>100mil</th>
<th>50mil</th>
<th>25mil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Via Inductance (effective)</td>
<td>3.3nH</td>
<td>2.4nH</td>
<td>1.5nH</td>
<td>0.7nH</td>
<td>0.3nH</td>
</tr>
</tbody>
</table>
Probe Card Power Delivery

Improvements - Capacitors & Others

- Use very low ESL & ESR capacitors
 - IDC Capacitors
 - Array Capacitor

- Reduce contact resistance
 - Probe to wafer bump contact resistance is important to probe card power delivery quality, higher contact resistance will result in a bigger Vdroop

- Improve tester power supply
 - Reduce tester power supply response time
 - Reduce power cable impedance
Probe Card Power Delivery Improvements - Innovative Improvement Techniques

- Active power regulation on probe card
 - GHz Voltage Regulation Device on ST
 - VRM Card on PCB
 - Voltage Regulation Circuit on PCB

Simulation of Vdroop improvement with & without Voltage Regulator

1st Vdroop improvement ≈ 30%
Conclusion & Acknowledgement
Conclusion

- In general, Microprocessor power consumption is going up and Voltage is going down, which creates a bigger challenge for power delivery.

- Traditional power path design and improvements will be limited by physical & electrical constraints.

- Innovative power delivery techniques are in need for future probe card power delivery design.
 - Probe card suppliers should work on innovative solutions for next generation high power devices.
Acknowledgements

- We want to thank our colleagues Eric Moret, Jun Ding, Phil Wade, Tim Swettlen for their contribution to the measurements.

- We want to thank SWTW to give us this opportunity to present our work.

- We want to thank all audiences for your interest & questions.