Study on microprobe processing by LIGA on Si Fundamental study for 3-D mold -Report 1-

> Teppei Kimura, JEM Japan (Japan Electronic Materials Corp.) Tadashi Hattori Himeji Institute of Technology

Better Probing Products

2004 SWTW in San Diego 1

A potential new technology for probing super-fine-pitch LCD drivers with Au bumps

- Introduction
- Experimental Procedures
- Results
- Conclusions

Problem

Conventional cantilever probe cards may not achieve the pitch requirement in the near future.

Need

New fabrication process to achieve the finer pitch probing.

LIGA : <u>Li</u>thographie, <u>G</u>alvanoformung und <u>A</u>bformung

- High aspect ratio : > 20
- High accuracy : < 0.5 um
- High uniformity

<u>Requirements for probing LCD</u> <u>drivers</u>

- Fine pitch (< 35um)
- Good contact with gold bump
- Minimal bump damage
- Low cost

Concept of 3–D Micro Probe Processing

LIGA process

Pros High aspect ratio & High accuracy

Con

High processing cost per mask

Si anisotropic etching

■ Pro

Can form sloped shape with only 1 standard UV mask

Con Limit on probe tip shape

Combination

<u>3-D micro probe</u>

Probe model by Ni electroforming

2004 SWTW

X-ray lithography

2004 SWTW

Ni electroforming

Ni electroforming

Resist and substrate removal

Experimental procedures

- · Si anisotropic etching
- · X-Ray lithography
- Ni electroforming & Lapping

Process step of Si anisotropic etching 2004 SWTW

Photograph of slope

Etching rate

6

Solution :TMAH(20%)

10

Temp: 85 deg

8

12

Thick resist preparation on mold

New Subaru Radiation Facility

Characteristics of X-ray lithography

Wavelength	0.1–1 nm
Storage energy	1.5 GeV

2004 SWTW

Development

2004 SWTW

Process step of X-ray lithography

Probe array after electroforming

Probe array after lapping

SEM photograph of micro probe

Contact force vs Overdrive

2004 SWTW

Contact resistance vs Overdrive

Conclusions

1. Micro probe with 3–D shape is manufactured by combining the processes of LIGA and Si anisotropic etching.

- 2. 80um of allowable probe tip deflection
- **3.** Satisfactory electrical contact within 10um to 70um overdrive can be obtained.
- 4. 3-D micro probe has the potential to be used for probing super-fine-pitch LCD drivers with gold pads.

1. Continue to evaluate the probes
Mechanical contact test (scrub, wear)
Electrical test (Cres vs. No of touchdowns)
Cleaning process and frequency

Reduce pitch (<25 um)
 Finalize assembly process

