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Purpose

• Outliers and quality improvement

• Outliers and test program optimization

• Outlier detection challenges

• Automated outlier detection
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Outliers and Quality Improvement 

• Early Life Failures
– Good when tested
– Fail in application

• Existing solutions are not economic for all 
products
– Burn In
– Lot Acceptance Testing
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Outliers and Quality Improvement

• Established relationship between Burn-In 
failures/ELFs and abnormal devices in the 
‘Bin 1’ population1,2,3

• Quality is inversely proportional to variance
– Reduced variation improves quality
– Eliminating parametric outliers from the   

Bin 1 population will reduce the number of 
early life failures
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Test Program Optimization
Throughput improvement – test removal

• High capability
• No failures
• No Alarms
• Correlated with other test(s)

False correlation
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Test Program Optimization

Missed correlation
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Outlier Detection Challenges
Data Populations

Gaussian Log Normal Bi-Modal 

Clamped Double-Clamped Categorical 
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Outlier Detection Challenges

• Each data population will have distinct 
statistical characteristics
– Mean, sigma
– Range, number of unique values
– Median, Inter-Quartile Range

• The presence (or absence) of test limits will 
also affect statistical relationships
– Cp
– Cpk
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Outlier Detection Challenges

• Assuming a Gaussian distribution
– Use: mean ± 6 sigma

• Alternatively, Percentiles provide a more 
‘robust’ description of a data set, median and  
robust sigma (IQR/1.35)

• Other methodologies are available including 
proprietary algorithms that dynamically 
classify outliers based on their proximity to 
the test limits
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Outlier Detection Challenges

Test 
Limits

Critical 
parametric 

outliers

Device

Example 1
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Outlier Detection Challenges

Mean +
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control 
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Example 1
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Outlier Detection Challenges
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Outlier Detection Challenges
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Outlier Detection Challenges
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Outlier Detection Challenges
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Outlier Detection Challenges

• Analysis of historical test data can be used to 
determine the most appropriate algorithm to 
use

• In practice wafer to wafer or lot to lot variation 
can cause test data distributions to change, 
invalidating pre-defined algorithm selection
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Practical Outlier Detection System

STDF

File

Identify 
Appropriate 
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Algorithm
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Outliers

Algorithm

Selection

Criteria

• IQR (inter quartile range) normal 
distribution

• IQR log normal distribution

• mean ± N sigma

• median ± N robust sigma (IQR/1.35)

• Proprietary Algorithms

• Custom Algorithm, Chauvenet’s criteria

Sample recipe rules (applied to each test):

• If CPK < N then use IQR normal …

• If RANGE/(UQT-LQT) < N then use proprietary

• If COUNT < 50 then skip outlier detection

• …



5/21/04 Buxton / Tabor @ SWTW-2004 18

Automated outlier detection tool
Optimize DPPM levels by: 
• Dynamically selecting the most appropriate 

outlier detection methodology
– Based on population statistics
– Library of standard, proprietary and custom 

algorithms
• Identify outlier devices

– Look for outliers of sufficient number or 
magnitude within the test results for a 
given device

– User configurable rules-based analysis
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Automated outlier detection tool

Test Program Optimization: 
• Time To Volume enhancement

– Reduced engineering effort
• Throughput enhancement

– Test time reduction
• Quality improvement

– Tests with significant outliers should be 
retained

• Repeatable, automated, and objective 
analysis
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Conclusion

• The identification of outliers in parametric test results 
offers benefits for both product quality and test 
program optimization

• In practice outlier detection is not straightforward and 
can be problematic depending upon the population 
distribution

• The optimal outlier detection algorithm should be 
identified dynamically for each data set

• An automated system to facilitate outlier detection 
and analysis is available
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