VITESSE

Challenges in 10GHz Transimpedance Amplifier (TIA) Production Testing

Xiaofang Mu, Ph. D. VITESSE Semiconductor Corp.

June 2004, San Diego

YOUR PARTNER FOR SUCCESS

10GHz Transimpedance Amplifier

I0GHz Transimpedance Amplifier (a.k.a.,TIA) are used for SONET/SDH OC-192/STM-64 and 10 GbE applications. 10GHz TIA are usually used in die form.

Key Specs for 10GHz TIA---AC

Key AC parameters

- Transimpedance (Z_T, ranging from hundreds of ohms to tens of Kilo ohms). Z_T is the gain from small input signal (~10uA order) to output voltage (e.g. 10mV output generated from 10µA input for 1Kohm Z_T). Z_T Can be measured in two ways:
 - Time domain
 - Output amplitude divided by input current at specified data rate (e.g. 1Gbps). Build 1Kohm resistor close to input (IIN) probe on probe card. Need oscilloscope and pattern generator.
 - Frequency domain
 - Calculated from S parameter. Use regular microwave probe at IIN and OUTP/OUTN. Need Vector Network Analyzer (VNA).
- Bandwidth (BW ~10GHz). Need VNA. 3dB down from reference point using S₂₁ or Z_T.
- ▶ S₂₂ (-15dB order). Related to output impedance. Need VNA.

Key Specs for 10GHz TIA---AC and DC

Key AC parameters(continued)

- Input Referred Noise (I_{NOISE} ~ 1.0µA order). Output noise referred to input by dividing Z_T. Output noise measured using
 - power meter. I_{NOISE} is related optical sensitivity. Some datasheet shows Input Noise Current Density ($I_{DENSITY} \sim 10 \text{ pA}/\sqrt{\text{Hz}}$ order), which is Input Referred Noise divided by square root of bandwidth.
- Output swing in limiting mode. Need oscilloscope.
- Other AC parameters like jitter and group delay etc.

Key DC parameters

- Power Supply Current (I_{CC}).
- Output Offset (V_{OFFSET}) and input bias voltage (V_{BIAS}).
- Received-signal monitoring current (I_{MON}) or voltage(V_{MON}).
- Other DC parameters like DC compensation parameters etc.

Methodology in 10GHz TIA Testing

- Exit on fail to reduce test time.
- DC parameters tested first due to short test time.
- Use frequency domain for Z_T measurement. VNA data are extracted for S₂₂, Z_T, and BW. Key is the accuracy of VNA measurement in broadband range (MHz to tens of GHz).
- Power meter to measure output noise and calculate I_{NOISE}.
- Oscilloscope to test output swing in limiting mode.

Challenges in 10GHz TIA Production Testing

- ▶ Frequency domain for Z_T measurement.
- Accuracy of VNA measurement in broadband range.
- Accuracy of power meter and oscilloscope testing.
- All calibration, correlation and test are performed in probing environment (probe card + automatic prober).

Z_T in Frequency Domain

$Z_{T} = f(S_{XY}) ?$

Two-port Network and S Parameters

Two port network

Two-port Network and Z parameters

Two port network

Z_T Formula from S parameters

$$i_2 = -v_2 / Z_0$$
 (5)

Use (5) in (4) and rearrange,

$$v_{2} / i_{1} = Z_{T} = Z_{21} / (1 + Z_{22} / Z_{0})$$
(6)
se $Z_{21} = Z_{0} \frac{2 * S_{21}}{(1 - S_{11})(1 - S_{22}) - S_{12}S_{21}} Z_{22} = Z_{0} \frac{(1 - S_{11})(1 + S_{22}) + S_{12}S_{21}}{(1 - S_{11})(1 - S_{22}) - S_{12}S_{21}}$ in (6),

 $Z_{\rm T} = Z_0^* S_{21} / (1 - S_{11})$ (7)

Xiaofang Mu

U

Z_T Formula Verification---Setups

- Use 1 kΩ resistor in series to convert input voltage swing to current swing into TIA. See diagram on the left.
- Use $Z_T = Z_0 * S_{21}/(1 S_{11})$. See diagram on the right.
- Both methods are used to test 40GHz TIA. Results track well over frequency, closer below 10GHz.

Z_T Formula Verification---Data

Data Source: Charles Wu, Vitesse Semiconductor Corp.

Accuracy of Test Equipment and Setup

- VNA accuracy in broadband range.
- Power meter accuracy.
- Oscilloscope accuracy.
- Setup calibration

Measurement Errors and Corrections

Systematic Errors

- Consistent and repeatable.
- Reduced by calibration.

Random Errors

- Random in nature.
- Reduced by averaging.

Drift Errors

- Measurement drift due to temperature and humidity etc.
- Keep constant ambient temperature and humidity.
- Reduced by periodic calibration.

Correlation

Validate setup, hardware and software etc

Vector Network Analyzer Errors

Systematic errors

- Causes: Imperfections in the test equipment and test setup.
- Characteristics: Repeatable and predictable, and therefore can be removed through calibration.
- Six types of errors
 - Directivity and cross-talk errors
 - Source & load impedance mismatches
 - Errors in reflection and transmission tracking
- Six errors are true for both forward and reverse direction.
- Calibration: An error model established on measuring known standards.

VNA Errors---Systematic Errors

Diagram for systematic errors

VNA Errors---Random Errors

Random errors

- Causes: Instrument noise; Switch repeatability;
 - Connector repeatability.
- Characteristics: Random and not predictable.
- How to reduce random errors
 - Increasing source power. S₂₁ need to be in linear mode(small signal). S₁₁, S₂₂ can use higher power.
 - Narrowing IF bandwidth. Trade-off between test time and accuracy.
 - Averaging over multiple sweeps. Balance between test time and accuracy.

VNA Errors---Drift Errors

Drift errors

- Causes: Temperature and humidity variation.
- Correlation wafer can catch drift errors.
- How to minimize drift errors
 - Keep ambient temperature and humidity stable in test environment.
 - Run periodic calibration if ambient condition changes
 - (e.g., temperature drift > $\pm 5^{\circ}$ C).

VNA Calibration

Two basic types of error correction

- Response calibration
 - Normalized measurement.
 - Correcting errors in reflection and transmission tracking.
- Vector error correction
 - One port calibration accounts for three errors in reflection measurement: Directivity, Source match and Reflection tracking.
 - Assumes good termination on the other port for a two-port device.
 - Three known standards: OPEN, SHORT and LOAD.
 - Two-port calibration corrects all major systematic errors.
 - Short-Open-Load-Through(SOLT) calibration and Through-Reflect-Line(TRL) calibration are two popular two-port calibrations.
 - Isolation (cross-talk) is usually omitted as the measurement are made near VNA's noise floor.
 - Both use 12-term error model.

VNA Calibration---OSLT

More on SOLT

- Preferred calibration in coaxial applications.
- Ideal "S": Unity reflection with 180 degrees of phase shift.
- Ideal "O": Unity reflection with no phase shift.
 - Lift probes up more than double the probe spacing above a bare spot on substrate;
 - Or use OPEN pad structures.
- Ideal "L": Perfect termination over a broad frequency range.
 - Use a pair of 100ohm for GSG probe;
 - Or single 50ohm for GS probes.
- Ideal "T" : Maintain constant impedance ($Z_0 = 50\Omega$).

VNA Calibration---TRL

More on TRL

- True TRL calibration requires a VNA with four receivers
- "T" either a THRU or a short transmission line (TL).
- "R" requires identical reflects on both ports.
 - Either SHORT or OPEN can be used.
- "L" NOT the same length as the "T". Z_o of "L" is the reference impedance for the measurement.
- Variations include Line-Reflect-Match (LRM) calibration and Through-Reflect-Match (TRM) calibration.
- Multiple lines are required for broad frequency.
 - A single line covers 8:1 frequency range.
- Optimal length of LINE standard is $\frac{1}{4}$ wavelength at the geometric mean of the desired frequency span ($\sqrt{f_1} * \sqrt{f_2}$)

Calibration Wafer

- Production automatic prober requires:
 - ▶ Repeatable pattern for alignment.
 - ▶ Need cal standards on 4/6/8 inch wafer.
- Cal standards on ceramic substrate used to validate and characterize cal wafer on engineering prober.
- To monitor the calibration process, a script is developed to record the data in each calibration step and compared to preset criteria.
- Operation procedure is established and released to manufacturing.
- Cal wafer covers multi products to cut cost

Zeroing set the power meter for a zero power reading with no power applied to power sensor.

Zeroing is needed before calibration and also recommended under the following conditions:

- ▶ Ambient temperature change > ±5 °C.
- Install a new power sensor.

Calibration use a traceable power reference to set the gain.

Run confidence check to verify the test path accuracy.

Oscilloscopes usually have built-in self-calibration features, or compensation capability to enhance measurement accuracy.

- Warm up time. Refer to user manual for time duration. Use features only after the scope temperature has stabilized.
- Handle sampling modules with care.
 - Install or remove sampling module after the scope is turned off.
 - Run calibration or compensation after a sampling module is installed.

Calibration or compensation is needed if ambient temperature, or humidity changes.

Guardbanding

- To deal with uncertainty of individual measurement.
- Assuming uncertainty of ε, the test limits can be guardbanded as follows:
 - Upper limit = Upper spec limit ε ;
 - Lower limit = Lower spec limit + ε ;
- For Gaussian distribution, ϵ can be set at 3σ .
- Improving measurement repeatability helps to reduce guard band.
- Averaging can improve measurement repeatability, yet at the cost of test time.

Other Considerations

Short cable for critical path.

- ▶ Input (IIN) to VNA and Output (OUTP/or OUTN) to VNA.
- Connectors, cables and other accessories for AC test are required to have a bandwidth better than 26GHz.
- Utilize the built-in Bias -T with Port 1 and Port 2 of VNA for DC tests.
- Use more data points and more sweep time if test time permits.
- Correlation wafer to verify setup.
 - Used as "Golden" wafer for operators to validate calibrated setup.

Conclusions

- Consolidate S₂₂, Z_T, and BW testing on VNA.
 - Express Z_T in terms of S parameters and validate the formula.

Errors of VNA and corrections are discussed.

- Cal wafer for calibration.
- Script to execute & evaluate calibration. Procedure is released.
- Adjusting source power, IF bandwidth, data points, sweep time and averaging to optimize production testing.
- Accuracy of oscilloscope and power meter discussed.
 - Temperature compensation for oscilloscope.
 - Zeroing and calibration for power meter.
- Correlation wafer to validate setup and calibration.
- Guardbanding to minimize measurement uncertainty.

- Thanks to Vy Van and Robert Bruck for their contribution in production release.
- Thanks to Allan Chan and Minh Le for the cal wafer laying out and fabrication.
- Thanks to Charles Wu and Bin Li for their informative discussions and help.
- Thanks to Mahesh Patkar for his support in the project.

VITESSE

Thank You

Xiaofang Mu June 2004, San Diego

YOUR PARTNER FOR SUCCESS