Microprocessor Probing Challenges: Scaling Sort Cost with Moore's Law

Jun Ding Thomas Little Jin Pan Tim Swettlen Intel Corp. Intel Corp. Intel Corp. Intel Corp.

June 2005

Outline

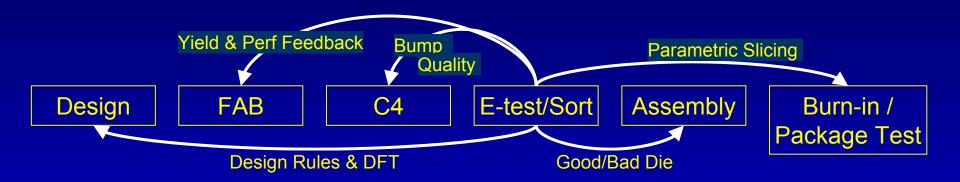
✓ Performance Impact at Wafer Sort

✓ Performance Requirement Trend

✓ Cost Trend

✓ Performance Sort

Disruptive Technology for Meeting Goals

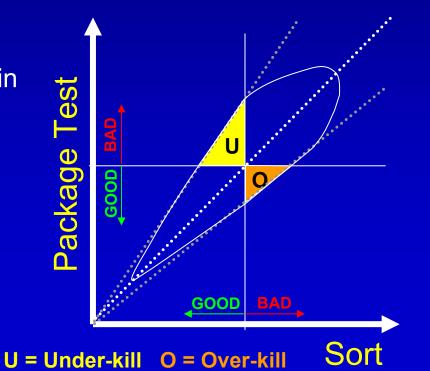

✓ Value Sort

Cost Reduction with Lowered Performance

✓ Key Messages

Sort Purpose

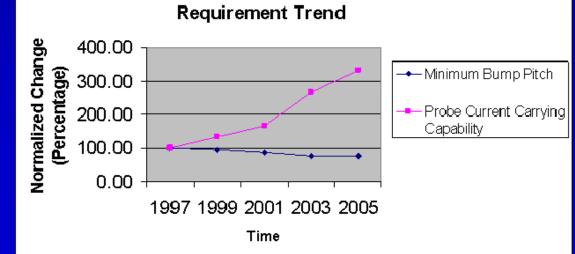
Sort data feeds into entire manufacturing flow
 It's Integral upstream & downstream


- Data Feedback
 ✓ Provides key Yield/Parametric data to Fab/C4
 ✓ Design Debug/Marginalities
- Data Feed-forward: Optimize back-end test operations
 - ✓ Screen Bad Dies → Save packaging costs
 - ✓ Parametric Slicing

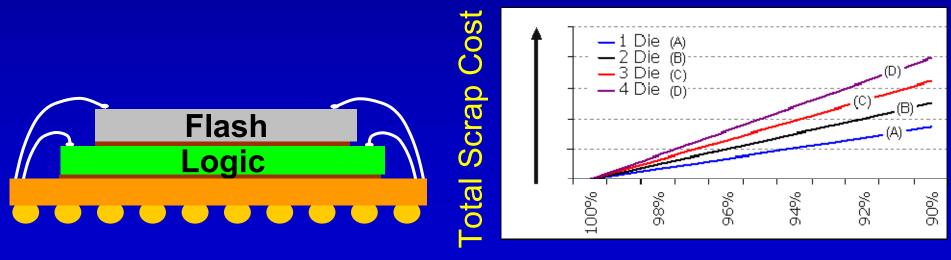
Performance Impact

- There is always a concern regarding correlation between sort and down stream test results
 - \checkmark Correlation \rightarrow Equivalent results at both testing steps
 - \checkmark Over-kill \rightarrow Die failed at sort and passed at package test
 - \checkmark Under-kill \rightarrow Die passed at sort and failed at package test

Example


- Sort test may require large power in short bursts
- Sort result lower than true performance
- ✓ A Root cause → Electrical imperfection of tooling

Requirements Trend


- Conflicting Product requirements
 - ✓ Pitch reduction vs. current carrying capability
 - ➤ 5-10% per generation pitch size reduction
 - 30-40% per generation current per contact historically (15-25% post Right Hand Turn)
 - ✓ True for many other competing attributes
 - Low K ILD protection vs. lead free material probing
 - Power delivery enhancement vs. probing cost

Key message: Keeping pace by <u>evolutionary</u> change will not be easy

Requirement Trend

- Multi-chip Package (MCP)
 ✓ Cost reduction, size compaction & performance increase
- Compounded yield loss results in high scrap cost
- Known good die (KGD) testing required to lower the scrap cost

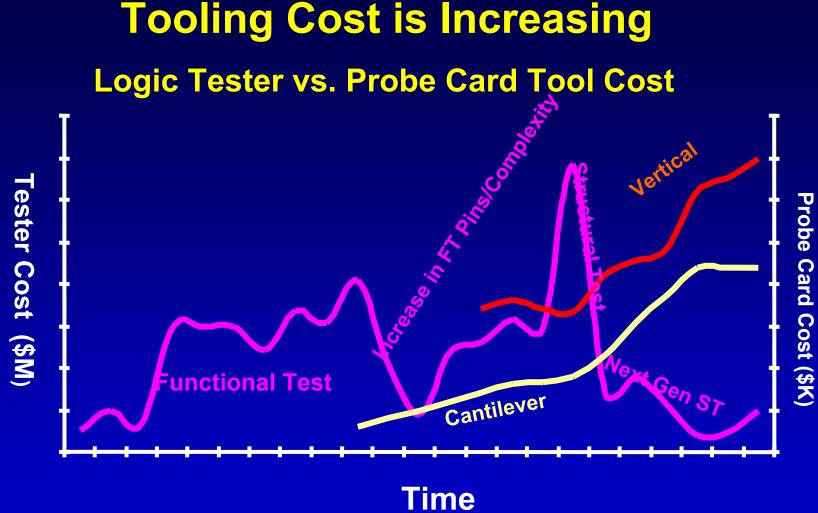
Per Die Yield

Slide - 7

SOUTHWEST TEST 2005 Tester Cost Per Transistor is Declining

Tool cost is trending down

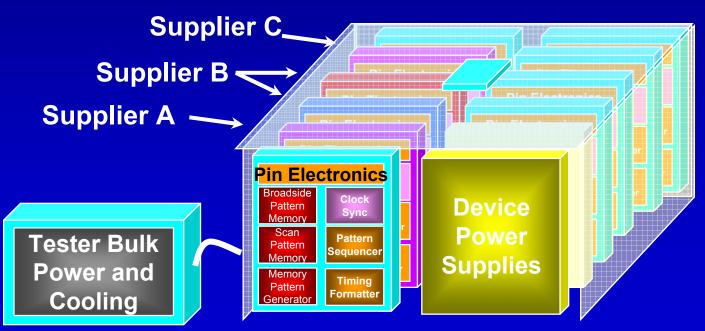
Cost Reduction Roadmap: Functional → DFT → Modular



DFT & Structural Test reduce equipment cost & complexity

- ✓ Reduced I/O data rate and accuracy requirements
- ✓ Reduced tester channel count
- ✓ Reduced resource flexibility requirements

SOUTHWEST TEST 2005

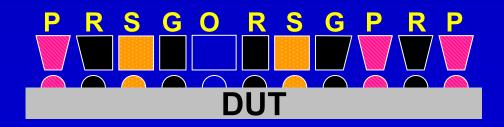

Disruptive technology innovation is needed to "right hand turn tooling cost

Source: Intel and Dataquest

CMT* – Disruptive Test option

Modular open architecture

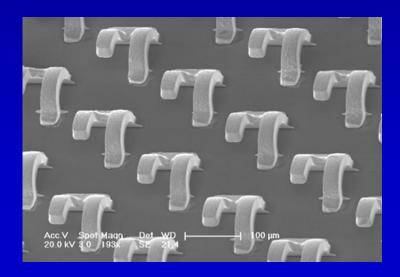
- ✓ Multiple suppliers using industry standards
- ✓ Reusable base platform
 - > new capabilities with incremental modules
- ✓ Standard OS and equipment interface software
- ✓ Scalable

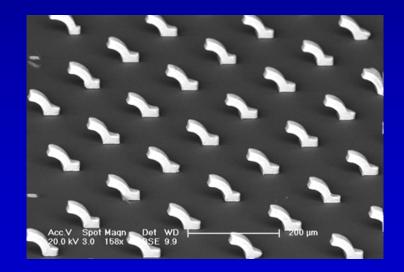


* Configurable Module Tester

Thinking inside the probecard

- If technical expectations continue their pace, one exotic solution may be interconnect customization
 - ✓ Build custom probes for each type of contact
 - Power probe for maximum power for power contact
 - Signal probe for maximum SI for I/O contact
 - Optical "probe" for optical interconnect


When	Relative Needs	Contact answer	
Was	Low Power / Low Speed	Just connect it	
IS	High Power / Low Speed	Optimize for power	
Next	High Power / High Speed	Optimize for both power & data	
?	Power, Speed and optical	?	



If the DUT requires power, signal and optical interconnect to DUT, will your technology work?

Thinking inside the probecard

- Litho (batch based) technology
 - Lower Cost
 - Better Pitch capability
 - Lower parasitic
 - ➤Insensitive to # of Probes

Slide - 12

SOUTHWEST TEST 2005

Changing technical landscape

Green = introduced

ltem	Date	Solution			Key SIU metrics	
		— time — \rightarrow				
Periphery	1960s –	WB	Litho	Vertical	Pad size	# of rows
pad	today				Pad pitch	# of DUT
C4	1980 –	Vertical	Pogo	MEMS/	Cres	Pitch
interconnect	today			V.Litho	Current carrying	
Lead free	2000 – today	MEMS/ V. Litho	Vertical			
Orthogl				Developieli		
Optical	> Today	TBD; are you ready?		Bandwidth	?	
					Intensity	?

Key message: interfaces technologies don't die. Market segment per style decreases with time.

Value Sort Pros/Cons

- ✓ Value Sort Definition
 - Reduced content
 - Reduced speed
 - Reduced parametric test accuracy
- ✓ Pros:
 - Lower sort unit cost through tool/tooling/TT reduction
 - Less challenge PF/Dev engineering efforts
- ✓ Cons:
 - Overall higher (after Fab) back end cost by the consequential underkill
 - Resultant overkill at sort Time to market

Summary

 Key message 1: Drive disruptive solutions innovation/development that reduce cost and sustain performance
 Performance Sort

 Key message 2: Value sort is not our preferable solution, but a cost reduction option if performance sort encounters showstopper and/or invokes too high cost.