

Optimizing Test Strategies for Multi-DUT Wafer Probing

Ken Smith, VP Technology Development Bob Hansen, Design Center Manager Southwest Test Workshop June, 2005

The demand for reducing test costs is causing a rapid adoption of on-wafer Multi DUT test strategies for Advanced Logic IC applications such as personal communications, automotive controllers, and other embedded processors. This paper shows several examples of the unique requirements and designfor-test opportunities presented by these highly integrated devices. Decision guidelines are presented for determining the appropriate number of die to test in parallel, selection of optimal stepping patterns, meeting signal integrity and power delivery requirements, and minimizing bond pad damage over low-K dielectrics and pad-over-active device applications. This includes recommendations for bond pad layout rules, passive RF structures, high current applications and elevated temperature test. We will follow the total solution design process for an 8 DUT embedded controller application as an example of this new industry trend. Engineering decisions include selection of bond pad locations to avoid "corner crowding", power distribution networks and voltage sensing to avoid voltage droop, and the tradeoff between a 1 x 8 array vs a 2 x 4 array for routing capability vs thermal expansion at 125 C.

Market trend

- Unique requirements for Multi-DUT cards
- Design methodology / process flow
- Decision guidelines for determining Multi-DUT test architecture
- Total solution design example
- Summary

Multi-DUT Market Trends

- Rapid adoption of on-wafer Multi DUT test strategies for logic IC applications to reduce cost of test
- Depending on tester overhead, indexing speed and other factors, test cost can be reduced by 50-90%
- Logic, mixed signal and SOC design life, tester costs, and test times create a different economic model from RAM test
- Our Multi-DUT product mix > 50% in 2004
 - Personal communications
 - Automotive controllers
 - Embedded processors

Why Multi-DUT? (the real reason..)

Ra

So you can go "Flying by" your competition ③

Photo courtesy Sailinganarchy.com

Company Confidential

MARINE

Unique Requirements for Multi-DUT Probe Cards

- Routing density
- I/O count
- Dimensional accuracy
- Planarity
- Elevated temperature (expansion, Cres)
- Known Good Die: Final test at wafer (at speed test)
- Functions / components on load boards and cards

Multi-DUT Design Flow (Altis, 2000)

Company Confidential

Design Process Flow (1)

MultiDUT Probe Card Decision Matrix

Typical Flow

o POAAo Bond Pad Layouto Corner Pads

Company Confidential

Design Process Flow (2)

IC Design --> Test engineering --> Test Floor

- o POAA
- o Bond Pad Layout
- o Corner Pads

- o Tester Resources
- o Test Temperatures
- o Keep out area
- o At Speed Test issues
- o Loopback
- o Customer Preferred Pattern
- o Critical Signals
- o Power Supplies
- o MultiDUT Pattern
 - o Layout Study
 - o Pad Size
 - o Die Size
 - o Probe area

Design Process Flow (3)

IC Design --> Test engineering --> Test Floor

- o POAA
- o Bond Pad Layout
- o Corner Pads

- o Tester Resources
- o Test Temperatures
- o Keep out area
- o At Speed Test issues
- o Loopback
- o Customer Preferred Pattern
- o Critical Signals
- o Power Supplies
- o MultiDUT Pattern
 - o Layout Study
 - o Pad Size
 - o Die Size
 - o Probe area

- o Service
- o Inventory
- o Training
- o Cleaning

Probe Card Design Guidelines

- Appropriate number of die to test in parallel
- Selection of optimal stepping patterns
- Meeting signal integrity and power delivery requirements
- Minimizing bond pad damage over low-K dielectrics and pad-over-active device applications.
- Bond pad layout rules
- Passive RF components
- High current applications
- Elevated temperature test

Detailed And Rigorous Design Rules

 Increasingly complicated process requires disciplined documentation and rev control to capture learning

<mark>// PP0d8 - [PP0d8 Main Meno] □ 目を PP0d8 Hep </mark>										
SQL Server A PPD dB Mai	n Mei	nu								
QAD										
Item NoteBook Run NoteBook	Open	Run Sh	neet							
Mask NeteBook Sales Order NoteBook	Shi	ip a Rur	n							
PCO NoteBook Reports Menu										
Process NoteBook DC Manager	Maintena	nce No	teBook							
EN Version: 31 F ^{**} Complete DSN-PPD_Data DSN-PPD_Data										
	PPDdB - [Process Notebook: All Not Obso Processes]									
	Elle PPDdb Help									
] X 🖻 🛍 İ 🖬			: □ i	H 🛛	A A 2↓ ↓ □ □ □ ▼ ↓ ↓ □ □ □ ↓ ↓ ↓ □ □ □ ↓ ↓ ↓ ↓				
			Process	Rev	Process	Description				
		+	850-118	7	Engr	Customer Specific Design Rules				
		+	850-120	7	Engr	Mask Elements, Chili Pepper features, alignment targets				
		+	850-121	2	Engr	Probe Tip Selection Table				
		+	850-122	3	Engr	Colording Prove Tipe				
		+	850-123	1	Engr	Design Study Report				
		+	850-124	1	Engr IC design guidelines for MultiDUT Testing with Pyramid Probe					
		+	850-125	Ptenped Board Design Guidelines, PCB, Printed Circuit besta						
Thoughts for the day: Money cannot buy love, but it can buy an cellent b		+	850-126	Qustom - CE Design Chooklint, Printed Circuit Board						
		+	850-127	1	Engr	Custom_Board_Pre_Design Checklist				
		+	850-128	1	Engr	Cust m PCB Standards, Printed Circuit Board				

Innovating Test Technologies[®]

Company Confidential

"IC design guidelines for Multi-site testing..."

- Line matching
- Differential signals
- Corner pad spacing
- Routing concerns for arrays

IC design guidelines for Multi-site testing with Pyramid Probes™

Objectives:

- Routing constraints of Pyramid probes
- Multi-DUT considerations
- IC design guidelines.

• Line match or critical signals

- Either north and south or east and west on die, allows 1 x n or n x 1 arrangement. If on adjacent sides, they will require skip or staggered die arrangements to route.
- o Keep differential signals on adjacent pads in a GSGSG or GSSG configuration. If they start matched, it is easier to keep matched.
- Corner pads
 - o Avoid use of corner pads. When corners come together in a 2 x n array, it is difficult to place probe tips on inside of corner. 200 um from corner for first pad in both directions.

*

🍕 🔁 🗞 🄗 🚳 💁 🖂 🛛 5:42 PM

Company Confidential

Innovating Test Technologies ®

👿 🔟 🖪 🖉 🔕 🥭 🗹 🖸 📀

Multi-DUT Pattern Selection Process

- 1. Routing study
- 2. Probe area vs pad size
- 3. Wafer map efficiency
- 4. Critical signal routing / component placement

1. Routing Study: Parameters

- Focus on high density areas
- 60 um pitch pads = 42 um trace pitch at 45 degree angle
- Power lines wider for current handling
- "Routing fence efficiency" ~ 70% of theoretical best

1. Routing Study Example

Die Size:	~5900um	
Multi-DUT layout:	2x4 (pref)	a a marine and a the second marine and a second
How Many Power		
Supplies?	6	
Can Power Supplies		
be grouped?	Yes	
Distance between		
furthest probes	23374	
Number of each Line	е Туре:	
Powers =	48	
AC =	0	
DC =	608	
GND's =	72	
RF =	0	
and the second s		
Total No. of Probes	808	
Total Sense Lines	48	
Total IO Required	704	

Company Confidential

2. Probe Area vs. Pad Size & Temp Range

Probe Area vs Minimium Pad Size

Company Confidential

Innovating Test Technologies ®

2. Probe Positions at 20 C & 125 C

Company Confidential

Probe Position Change at Elevated Temperature (distribution)

Probe Position Change at Elevated Temperature (Cp)

Probe Position Compensated for Elevated Temperature

Cp = 1.3 for 47 um pads at 125 C only (dedicated core)

2. Probe Area vs. Pad Size & Temp Range

Probe Area vs Minimium Pad Size

Company Confidential

Innovating Test Technologies ®

3. Wafer Map Efficiency

MJC SWTW 2003 showed diagonal vs square efficiency

4. Critical RF Line /Component Placement

n

- Bluetooth Transceiver SOCMultiple RF lines (5 GHz)
- 1.95 nH (± 0.1) inductors

Delay depends on dielectric constant and architectureSystematic processes for delay matching are required

	Polyimide		Alumina	
	Dielectric	Delay for	Dielectric	Delay for
	Constant =	300 mm	Constant =	300 mm
Architecture	3.5	route	10	route
	(mm / ns)	(ns)	(mm / ns)	(ns)
Stripline	160	1.9	95	3.2
Microstrip				
(buried)	167	1.8	99	3.0
Microstrip	175	1.7	104	2.9
 Coplanar				
waveguide	196	1.5	125	2.4
Range				
(min:max)	82%	0.3	76%	0.8

DUT Pattern Selection Criteria (1 = most capable, 4 = least capable)

Company Confidential

Example: Microcontroller, 8 DUT

- Bond pad layout to avoid "corner crowding"
- Critical signals
 - Analog battery management signal, high speed lines
- Power distribution networks and voltage sensing
 - Voltage droop
- Array selection: routing vs thermal expansion
 - 2 x 4
 - 1 x 8

Routing Study Step 1a: Pad/Netlist

Detailed, systematic process, electronic data transfer

M																	
	B Elle Edit View Insert Format Iools Data Window Help																
] D	📂 I	38	- 😂 🗳	💞 👗 🛍 🛍	3 🐼 🔊 -	• CH +	🍓 Σ f≈ 2↓ 1	84 🛍 🐔	100% - 🖸	🖏 🗸 📋 Times I	New Roman 👻 10 👻	BZ	′⊻∣≣ ≡ ≡	• 3 •	\$ %	• • • • • • • • • • • • • • • • • • •	[루 태종 🕮 ▾ 🥙 ▾ 🗛 ▾ ▾
	R1		-	=													
	Α	В	С	D E	F	G	Н	1	J	K	L	M	N	0 P	Q	R	S T 🔺
1	Руг	amid	Probe [™]	1													
2	Pro	be Ta	able -														
3																	
4					As Measure	ed BY CI	ЛI										
-				Pad Center												1	
			DUT &	(customer	Pad Ce	nter					Netlist generated by l	Design					
5	DUT	Pad	Pad	Provided)			Pad	Line type:	Bandwidth	Maximum	checker with corre	cted	PCB net name		PCB/	Pogo Pad	Other requirements / notes
6	No.	No.	No.	(0,0=)	(0,0 =		Name	AC, DC,	or Risetime	current if	coordinate system (07	7/22/04)			Core	Number /	Explain on separate sheet, if ne
7				X Y	x	Ŷ		P, GND	[MHz or nS]	>0.1 Amp					Interface	Header#	
9	0	1	01	0 0	0	0	PTHO	DC			0 1PTH0	NC47	0 PTF6 H0	0 1	NC47	71	NC47 0 1 PTH0
10	0	2	0 2	0 -140	0	-137	PTD3	DC			0 2PTD3	NA125	0 PTD3	0 2	NA125	455	NA125 0 2 PTD3
11	0	3	0_3	0 -280	0	-273	PTD2	DC		1	0_3PTD2	ND49	0_PTD2_G2	0 3	ND49	199	ND49_0_3_PTD2
12	0	4	0_4	0 -435	0	-424	VSSADC/VREFL	GND		l	0_4VSSADC/VREFL	GR	GND	0 4	GR	GND	
13	0	5	0_5	0 -555	0	-550	VSSADC/VREFL	GND			0_5VSSADC/VREFL	GR	GND	0 5	GR	GND	
14	0	6	0_6	0 -715	0	-706	VDDADC	Р		ļ	0_6VDDADC	NB47	0_VDD	06	NB47	PO	NB47_0_6_VDDADC
15	0	7	0_7	0 -855	0	-843	PTD1	DC			0_7PTD1	NC49	0_PTD1_G1		NC49	343	NC49_0_7_PTD1
16	U	8	0_8	-990	U	-979	PIDU	DC			0_SPTD0	NB49	0_PTD0_G0	0 8	NB49	87	NB49_0_8_PTD0
17	. <u>U</u>	9	0.9	U -163U	U	1704	PTB/	DC			U 9PTB/	SCUS	U_PTB7	0 9	SCUS	4/1	SCUS_U_9_PTB/
10	0	10	0 10	0 -1790	0	10/1	DTRE					SB05		0 10	SB05	215	SBUS_U_IU_PIB6
20	n	12	0_11	0 -1550	0	-7344	PTB4	DC			0 12PTB4	34012	0 PTB4	0 17	SA011 SA012	70	SA012 0 12 PTB4
20	n	13	0_12	0 -2110	0	-2765	PTB3	DC			0 13PTB3	SD06	0 PTB3	0 12	SD06	454	SD06 0 13 PTB3
22	Ō	14	0 14	0 -2435	Ö	-2425	PTB2	DC			0 14PTB2	SC06	0 PTB2	0 14	SC06	198	SC06 0 14 PTB2
23	Ō	15	0 15	0 -2595	ō	-2585	PTB1	DC			0 15PTB1	SB06	0 PTB1	0 15	SB06	342	SB06 0 15 PTB1
24	0	16	0 16	0 -2720	0	-2709	PTBO	DC			0 16PTB0	SA014	0 PTB0	0 16	SA014	SEE FIG. A	SA014 0 16 PTB0
25	0	17	0_17	0 -2885	0	-2871	PTA7	DC		ĺ	0_17PTA7	SA015	0_PTA7	0 17	SA015	453	SA015_0_17_PTA7 💌
518	7	50	7 50	20885 -35	20882.5	-32	IRQ1	DC			7 50IRO1	NC08	7 IRO1	7 50	NC08	437	R15/132 NC08 7 50 IRO1
519	7	51	7 51	20885 110	20882.5	114	PTC4	DC		1	7 51PTC4	ND08	7 PTC4	7 51	ND08	293	ND08 7 51 PTC4
520	7	52	7_52	21060 195	21060.5	200	PTC5	DC			7_52PTC5	NA018	7_PTC5	7 52	NA018	317	NA018_7_52_PTC5
521	7	53	7_53	21220 195	21222.5	200	PTC3	DC			7_53PTC3	NA017	7_PTC3	7 53	NA017	44	NA017_7_53_PTC3
522	7	54	7_54	21350 195	21350.5	200	PTC2	DC		ļ	7_54PTC2	NA016	7_PTC2	7 54	NA016	300	NA016_7_54_PTC2
523		55	7_55	21475 195	21481	200	PTC1	DC			7_55PTC1	NC07	7_PTC1	7 55	NC07	189	NC07_7_55_PTC1
524		56	7_56	21605 195	21608	200	PTCO	DC			7_56PTC0	ND07	7_PTC0	7 56	ND07	445	ND07_7_56_PTC0
525	<u>(</u>	57	7 5/	21735 195	21738.5	200	USC1	DC			7_57OSC1	NB07	7_OSC1	7 57	NB07	172	NB07_7_57_OSC1
J20 527		50	7 59	21000 195 21995 195	21000 22000 F	200	CGMXEC	DC		ļ	7_580502 7_5900MYEC	NC06	7 CGMYEC	7 50	NAU14	420	NA014_7_38_OSC2
528		60	7 60	22690 193	22000.0	200	AVSSADCA/SS	GND			7 60AVSSADC/VSS	GR	GND	7 60	GR	GND	INCOD_7_99_COMAR
529	7	61	7 61	22815 195	22815.5	200	AVSSADC/VSS	GND			7 61AVSSADC/VSS	GR	GND	7 61	GR	GND	
530	7	62	7 62	22990 195	22995	200	VDDA	P			7 62VDDA	NB04	7 VDD	7 62	NB04	P7	NB04 7 62 VDDA
531	7	63	7 63	23125 195	23130.5	200	VREFH	DC		1	7 63VREFH	NB03	7 VREFH	7 63	NB03	CTO-7-VRA	NB03 7 63 VREFH
532	7	64	7_64	23255 195	23257.5	200	PTD7	DC			7_64PTD7	NC03	7_PTD7	7 64	NC03	299	NC03_7_64_PTD7
533	7	65	7_65	23390 195	23395	200	PTD6	DC			7_65PTD6	ND03	7_PTD6	7 65	ND03	171	ND03_7_65_PTD6
534	7	66	7_66	23525 195	23532.5	200	PTD5	DC		Ļ	7_66PTD5	NA006	7_PTD5	7 66	NA006	427	NA006_7_66_PTD5
535		67	7_67	23665 195	23669.5	200	PTD4	DC			7_67PTD4	NA005	7_PTD4	7 67	NA005	59	NA005_7_67_PTD4
536	7	68	7_68	23820 195	23828	200	PTH1	DC		ļ	7_68PTH1	ND02	7_PTF7_H1	7 68	ND02	315	ND02_7_68_PTH1
537						ļ											
338																	
	19 9	∖ rage	ang cure	rage X Custom Bo		ar nan ∣	ntsinglesite ∧ Chai			A Chard-Pa	aus coordination - X Test	Motes X I	Notes & Item Rev	ISION C	maron y		•]
Dra																	
Rea																	
3	tart] 🚾] F	R 🛛 🖂 R	📖 🖂 A 🖂	R 🖸 In.] 🔍 Q	🗹 R 🗹 F.	🦉 Si	🦉 M 🦉	M 🛛 🖂 R	· <u>C</u> Mi <u>B</u> B E	Ex		່ 🔍	🥭 🖸 🤄	2 😏	🎨 🔁 🍋 🏈 🥸 💁 🕴 4:54 PM

Company Confidential

Routing Study Step 1b: Generate Pattern Options

Company Confidential

Routing Study Step 1c: Route Critical Areas

Practice symmetry

- Uniformity die-die
- Easier to edit / sustain
- Manage propagation delay matching
- Manage series resistance of critical lines

Temperature / Position Accuracy Calculation

Inputs:

Pad X dimension	55
Pad Y dimension	55
Passivation Thickness	0.8
Make/Model of Probe Station	XXX
Make/Model of Tester	XXX
Probe Tip Type	3
Probing Temperature Max	125
East West Die Size	24400
North South Die Size	12050
Customer Substrate Material	Si
Output: Single card capable?	No
olucion: Two cords required 25	2 125

Conclusion: Two cards required, 25 & 125 C

Critical Signals: Length Matching

Line type:	Bandwidth	Ref	Other requirements (impedance match,
RF, AC,	or Risetime	Designator	delay match, - line(s) / tolerance, etc.
DC,P,GND	[GHz or pS]	Header#	Explain on separate sheet, if necessary)
N/C		NC	
AC	200MHz	12	Analog input 1-2 mV. Match pair +/- 10ps.
AC	200MHz	13	Analog input 1-2 mV. Match pair +/- 10ps.
AC	200 ps	14	Analog output Match pair +/- 10ps.
AC	200 ps	15	Analog output Match pair +/- 10ps.
AC	200 ps	16	Analog output Match pair +/- 10ps.
AC	200 ps	17	Analog output Match pair +/- 10ps.
AC	200MHz	18	Analog input 1-2 mV. Match pair +/- 10ps.
AC	200MHz	19	Analog input 1-2 mV. Match pair +/- 10ps.

Dense pack is possible in this case

- Not limited by routing
- Not limited by component placement
- Larger patterns / skips not required

Core Layout 2 x 4 Array

12 x 24 mm area55 um pad size

- 800 I/O (signals)Separate cores for
 - . 25, 125 C (one PCB)

Board Layout

Multiple ground / power planes (not shown) Critical signals delay matched

8-DUT Probe Card

8 week lead time Good technology fit

E.

Other Considerations

- Street size / stepping distance may change at different fabs for the same device
 - Multi DUT cards may not be transferable between fabs
- Increased design complexity requires rapid response for design issues from both partners to minimize lead time
- Availability of a good Multi-DUT wafer map optimization algorithm
- Economic trade-offs among tester resources, load board components, on-chip test resources

- Multi-DUT probing is complicated and many details are critical, but manageable with a disciplined process
- A systematic collaborative process from IC design through installation is essential
- Multi-DUT test of advanced logic devices is increasing rapidly
- Cost reduction has been demonstrated (multiple test floors with HVM)

 Andrew C. Evans, "Applications of Semiconductor Test Economics, and Multisite Testing to Lower Cost of Test", ITC 1999, pp.113-123

 Dominique Langlois and Patrick Buffel, "Let's Skip and Win", SWTW 2003