New composite probe of Rh and Ni-Mn for high current and fine pitch testing

Kazunori Okada (okada-kazunori@sei.co.jp), Yoshihiro Hirata, Tsuyoshi Haga, Masao Sakuta

Sumitomo Electric Industries, Ltd.

Agenda

1. Background : needs for advanced probe

2. Concept of new probe : composite of Ni-Mn, Rh and Cu

3.Process : LIGA process

4.Performance : 1A is capable

5.Conclusion

Background (1)

2002 ITRS High Performance Device roadmap

Technical trend of contact probe

(1) Narrow pitch

(2) High current

K.Okada

Background (2)

Technical trend of contact probe

New material for advanced probe is required !

Concept of new probe (1)

Concept

(1) Process : Lithography & Electroforming for narrow pitch

(2) Material : composite

< Electroformable metal >

	mechanical property	conductivity	contact resistance	
Ni-Mn	++	+	+	GOOD
Rh		++	++	- composite
Cu		+++		J
?	++	++	++	Single material
				No Existence

K.Okada

June 6th , 2005

5

Concept of new probe (2)

Ni-Mn : good mechanical property Cu : good conductivity(current & heat) Rh : low Cres & good conductivity

Process (1)

Overall resistance is calculated as 83% of Ni-Mn probe

K.Okada

Basic properties (1) mechanical performance

Composite probe's spring constant is 90% of Ni-Mn.

Basic properties (2) touchdown test

 Scrub mark didn't curve.
After 30,000 touch down (@27mN), >The tip was not worn out >There is no boundary separation.

K.Okada

Basic properties (3) overall resistance

K.Okada

Current capacity (1) measuring system

Schematic view of measuring system

Current capacity (2) 1A current carrying test

Composite probe can carry 1A @room temp. Cu layer goes down overall resistance. It restrains joule heating and helps heat-diffusion.

Current capacity (3) After 1A current carrying

Ni-Mn

composite

after 1.0A × 1s

after 1.0A × 300s

Contact resistance goes down by Rh layer. And the tip avoids melting after 1A × 300s.

Current capacity (4) Limited current

Test condition >@room temp. >pulse width :1s

K.Okada

Current capacity (5) temperature effect

Test condition >pulse : 1A x 1s

Composite probe can carry 1A @90°C.

K.Okada

Transition of probe's spring constant

CP spring constants didn't change after testing.

K.Okada

Conclusion

(1)We proposed composite probe of Ni-Mn and Rh, Cu for high current and fine pitch testing.

(2)We fabricated composite probe by lithography and electroforming for 80 μ m pitch, and confirmed followings;

- > There was no boundary separation after 30,000 TD test. Composite probe was available.
- > The overall resistance was lower than conventional Ni-Mn probe.

(3)The current capacity was 1.0A @90°C, and 1.2A @RT.

(4) It will be able to improve the current capacity by revising layer thickness, tip shape and/or spring shape.