Full Wafer Test: Making Test More Cost-Effective

2005 SouthWest Test Workshop
June 5 - 8, 2005

Steve Steps
Senior Director, Wafer-Level Burn-in and Test
Agenda

• Trends in multi-up probing
 – Total Test Time
 – Cost of Test

• Converging Technologies
 – Massively Parallel Test
 – Full Wafer Contact
 – Design For Test (DFT)

• Results of technology convergence

• Conclusions
Trends in Multi-Up Probing

- Trend over time has been to increase the number of DUTs tested per touchdown
- Leading edge probe cards are in the range of:
 - 32 to 250 DUTs *
 - 1000 to 5000 contacts *
- Goal is to move closer to single touchdown testing

* Source: “Leading Edge” of Wafer Level Testing, Bill Mann, SWTW 2004
Total Test Time

• Total time to test a wafer is:
 – Wafer exchange time (usually not significant)
 – Per step time * number of steps
 • Step time
 • Test time per step

• What if test time per step gets long?
6/7/2005 Steps -- Full Wafer Test
Cost of Test

• The primary costs are:
 – Prober
 – Probe Card
 – Tester

• As the number of die probed per step increases, the cost of
 – Prober remains mostly the same
 – Probe card gets more expensive (~linear)
 – Tester gets more expensive (~linear)

• Benefit of doubling the number of DUTs per touchdown decreases
Cost Per Tested Die

- Benefit decreasing

Cost Per Tested Die

16x
32x
64x
128x

6/7/2005
Steps -- Full Wafer Test
Converging Technologies

- Full Wafer Contact
- Massively Parallel Test
- Design For Test
Micro Spring Contactor

- High touchdown life
- High compliance
- Works with most pad metallurgies
- Multiple pitches available

Source: Full Wafer Contact Reliability and Repeatability, Steps/Lindsey, SWTW 2003
Micro Spring Close-up (750u Pitch)

Source: Full Wafer Contact Reliability and Repeatability, Steps/Lindsey, SWTW 2003
Full Wafer Contactor

Source: Full Wafer Contact Reliability and Repeatability, Steps/Lindsey, SWTW 2003

6/7/2005 Steps -- Full Wafer Test 12
Micro Spring Close-up (200u Pitch)

Source: Full Wafer Contact Reliability and Repeatability, Steps/Lindsey, SWTW 2003
Nano Spring Contactor

Contactor Array
80 micron pads

Source: Full Wafer Contact Reliability and Repeatability, Steps/Lindsey, SWTW 2003
One Million Touchdowns

Source: Full Wafer Contact Reliability and Repeatability, Steps/Lindsey, SWTW 2003
Micro Spring Before and After

Pin Tip before and after 1 million touchdowns

Source: Full Wafer Contact Reliability and Repeatability, Steps/Lindsey, SWTW 2003
Loop Resistance Diagram

Loop Resistance = Two contacts plus trace resistance

Source: Full Wafer Contact Reliability and Repeatability, Steps/Lindsey, SWTW 2003
Loop Resistance Histogram

Vcc to Gnd Pin

Source: Full Wafer Contact Reliability and Repeatability, Steps/Lindsey, SWTW 2003

6/7/2005

Steps -- Full Wafer Test
Full Wafer Contact Uniformity

Source: Full Wafer Contact Reliability and Repeatability, Steps/Lindsey, SWTW 2003
Massively Parallel Test

• Massively Parallel testing spreads the channel cost across many device I/O pins
• Parallel testing speeds are lower
 – Capacitive loading reduces the maximum frequency
 – No need for ultra high speed channels
 – Cost per channel is lower

• Combination of:
 – Multiple device I/O pins per channel
 – Lower per channel cost

→ Much lower cost per device I/O pin
Parallel Testing

128 Tester I/O Channels X 32 CS = 4096 Total Device I/O Pins

Source: Full Wafer Contact Burn-In and Test -- The Ultimate in Parallelism?, Steps, BiTS 2003
Standard Testing

• Full I/O speed
 – Cost per channel very high ($Ks/channel)
 – Signal cables must be very short
 – GHz testing very difficult

• Full I/O width
 – One channel per device pin
 – Total device count per test very limited
Test Evolution – Structural Test

• Typically scan chain based
• External clock rate needed vastly reduced
• On chip ATPG
 – I/O width significantly reduced
 – Still can have edge timing constraints
• Design For Test (DFT)
 – Device I/O pin clock rate << Internal clock rate
 – Very narrow I/O (e.g., 5 pin IEEE 1149.1)
 – Channel cost reduced (<$100/channel)
 – Parallel testing possible (<$5/device I/O)
Today’s Testing Process

Using 32 site probe card:

| Load Wafer | Test | Step | Test | Step | Test | . . . | Test |

For 500 die wafer, about 20 cycles
Full-wafer Approach

Only one cycle required

10-20X Time Reduction!
Results of Technology Convergence

• Correlation > 99% versus normal prober approach
• Massive reduction in:
 – Total wafer test time
 – Product inventory on test floor
 – Capital equipment
 – Cost per tested die
Conclusions

• Full wafer testing has arrived!