An Advanced Probe Characterization Tool for Online Contact Basics Measurements

2005 SouthWest Test Workshop

June, 7th 2005, San Diego (CA)

Oliver Nagler (Infineon Technologies AG, Munich, Germany)

Markus Reinl, Prof. Dr. Ignaz Eisele (Universität der Bundeswehr, Munich, Germany)

Never stop thinking.

An Advanced Probe Characterization Tool Outline

- Motivation
- Existing Tools
- Schematic
- Realisation
- Components
- Calibration
 - Exemplary Measurements
 - Summary
- Outlook

An Advanced Probe Characterization Tool Motivation

- Modelling contact basics
- Optimizing contact resistance
- Avoiding oxide / low-k crack generation
- Influence of vertical and lateral forces wrt Cres
- Investigation of pad materials (thickness, hardness, etc.)
- Analysis of oxide films
- Evaluating new probe types
- Investigating prober dynamics

An Advanced Probe Characterization Tool Existing Tools for Contact Force Measurement

- Single Probe Plunger in Probe Card Analyser
- Weighing Platform (only z-force)
- Piezoresistive force sensor in Probe Holder
- Micromechanical sensors
- Pad-integrated sensors
- Automatic Prober

An Advanced Probe Characterization Tool Requirement Specification

- 1. Realtime contact resistance measurements
- 2. Automatic contact point definition
- Positioning Accuracy in ... xy-direction: ± 0.5 μm z-direction: ± 0.05 μm
- 3. Capable for mounting different probe card types
- 4. Simultaneous sensing of lateral and vertical forces in the range of 0.5mN 10 N
- 5. Retainer for various samples (AI, Cu, SiO₂, chips, ...)
- 6. Static and dynamic measurements
- 7. Microscope w/ video camera
- 8. Optional test under variable environment gas (O₂, N₂, ...)
- 9. Optional test with variable probing temperature (-40 125°C)

An Advanced Probe Characterization Tool Tool Schematic

/er Nagler rkus Reinl of. Eisele

2005 SouthWest Test Worksh

/er Nagler rkus Reinl of. Eisele ge 7

An Advanced Probe Characterization Tool Manufacturing Drawing

An Advanced Probe Characterization Tool

General View 1:. 000 00

Single-Probe Card

Sample Holder

2005 SouthWest Test Worksh

rkus Reinl of. Eisele

ge 9

An Advanced Probe Characterization Tool Vertical Positioning Stage

Travel range	12.5	mm
Design resolution	0.024	μm
Min. incremental motion	<0.1	μm
Unidirectional repeatability	0.1	μm
Max. velocity	12	mm/s
Max. normal load capacity	5	kg
Max. holding force (motor off)	20	N
Encoder resolution	40,960*	cts/re
Ballscrew pitch	1	mm/re
Gear ratio	80/26 (belt drive)	
Nominal motor power	17**	W
Motor voltage range	0 to ±24	V
Weight		
Body material	AI	

An Advanced Probe Characterization Tool 4-pole Cres Measurement

ver Nagler rkus Reinl of. Eisele

2005 SouthWest Test Worksh

An Advanced Probe Characterization Tool Single Point x- and z-Load Cell

Special Feature: Off center load compensated

Туре		PW2GC3				
Accuracy class		C3 ¹⁾				
Maximum number of load cell intervals (n _{LC})		3000				
Maximum capacity (E _{max})	kg	7.2	12	18	36	72
Minimum LC verification interval (v _{min})	g	2	2	5	10	20
Maximum platform size	mm	380 × 380				
Sensitivity (C _n)	mV/V	2.4 ±0.24				
Zero balance(without dead load)	mV/V	0 ±0.1				
		-				

Absolute Accuracy:	
x-direction:	21,6 mN
z-direction:	36 mN
Decelution	

Resolution:

x-direction : z-direction : 0,36 mN 0,6 mN

An Advanced Probe Characterization Tool Data Acquisition and Visualisation

Software Options:

- Automatic amplifier recognition
- Sensor database available and expandable
- Graphical display
- Real-time
- Different interfaces supported (USB, Ethernet, GPIB, etc.)
- MS Windows XP
- Measurement data exported in commonly used formates (e.g. ASCII, EXCEL,)

An Advanced Probe Characterization Tool Calibration Method

/er Nagler rkus Reinl of. Eisele

ge 13

ver Nagler rkus Reinl of. Eisele

An Advanced Probe Characterization Tool Calibration Realisation

An Advanced Probe Characterization Tool

Exemplary Measurements with a Cantilever Probe

2005 SouthWest Test Worksh

An Advanced Probe Characterization Tool Cantilever Probe used for Demonstration

2005 SouthWest Test Worksh

ver Nagler rkus Reinl of. Eisele

An Advanced Probe Characterization Tool z-Stage Profile

2005 SouthWest Test Worksh

ver Nagler rkus Reinl of. Eisele

An Advanced Probe Characterization Tool Measurement on Gold Wafer (max. OD = 50µm)

ver Nagler rkus Reinl of. Eisele

An Advanced Probe Characterization Tool Measurement on Aluminum Wafer (max. $OD = 50 \mu m$)

/er Nagler rkus Reinl of. Eisele

An Advanced Probe Characterization Tool Probe Parameters vs. OD on Gold

ver Nagler rkus Reinl of. Eisele

An Advanced Probe Characterization Tool Probe Parameters vs. OD on Aluminum

2005 SouthWest Test Worksh

ver Nagler rkus Reinl of. Eisele

An Advanced Probe Characterization Tool Cres Distribution

rkus Reinl of. Eisele

/er Nagler

An Advanced Probe Characterization Tool Quasi-Statical Measurement on Gold

ver Nagler rkus Reinl of. Eisele

An Advanced Probe Characterization Tool Summary

- A novel tool was demonstrated real-time measurements of lateral, vertical forces and contact resistance
- External noise must be minimized to improve accuracy
- Capable to all probing technologies
- Preliminary results show, that …
 - Contact resistance on Au more stable than on AI (Oxide Film?)
 - Change of sign of lateral force during z-up/-down for cantilever probe
 - Coefficient of friction between 0.2 and 0.5 (material dependent)
 - Average Cres and distribution on Au smalller than on Al
 - Holm Theory to be verified

An Advanced Probe Characterization Tool Next Steps

- Elimination of disturbing factors (cabling, acoustic noise, ESD, vibrations)
- Labview Programming of z-stage
- Image processing software for microscope
- Verification of contact resistance model ("Holm Theory")
 - Investigation of different probe types (vertical, MEMS, etc...)
- Influence of dynamics
- Analysis of new pad materials
- Oxide / low-k crack generation and avoidance

rkus Reinl of. Eisele

Automated x- and y-stage control