Reducing False Defects: Debris and Edge Excursions

Rajiv Roy, August Technology SW Test Workshop June 8, 2005

Post-probe : Typical Process Defects Detected

- Probe mark too big
- Probe mark too small
- Missing probe mark

- Pad discoloration
- Probe mark location
- Probe mark too close to edge

Probe Mark Inspection

- Rectangular bond-pads
- Bond pad corrosion
- Probe mark area and location metrology
- Probe mark debris filter size
- Probe mark debris filter edge debris
- Real-time classification of probe mark defects
- Non-rectangular bond-pad
- Separate image save
- Auto-bond pad location

Why Automate Inspection?

System can find defects like these missed by operators:

Debris and stain

Passivation on pad

Excess metal flake near pad

The Challenge of Automated Probe Mark Inspection

- To make inspection affordable
 - >15wph or higher throughput needed
 - Better than 1µm resolution needed for distinguishing true from false defects

See More at Higher Resolutions

5μm 2μm 1μm

....but takes more inspection time

Throughput vs. Resolution

The Probe Mark Debris Challenge

- Debris is:
 - A natural by-product of the probing process
 - Considered non-critical to device functionality
- Automatic probe mark inspection systems have difficulty differentiating between defects and debris.

Aluminum slag/debris – mistaken for probe mark too big

..... a source of false defects

Edge debris – small/faint – mistaken for edge excursion

The Specific Challenge of Edge Excursions

Cause of Edge Excursion

- If probe needles and bond pad are not aligned properly, needles penetrate the edge of the passivation layers and cause a defect
- This defect is known as edge excursion or broken passivation

Rogues Gallery: Images of False vs. True Defects

Real edge excursion – systems can detect

Real edge excursion – systems struggle to detect

Edge debris – systems detect but are false defects

The Effect of Simply Detecting "Defects" (Anomalies)

Detection to Decision for Probe Mark Inspection

Statistical Probe Mark Area Filter

Assumptions Made:

- All bond pads on one die have been subjected to the same number of touchdowns
- Actual probe damage area will not differ in a statistically significant manner within one die

Probe Mark Area Inspection Without Filter

Probe Mark Area Inspection With Area Filter

Standard Deviations vs. Performance

Bond Pad	<u>No Filter</u>	<u>2σ Filter</u>	<u>3σ Filter</u>	<u>4σ Filter</u>					
1	9.60	9.60	9.60	9.60		Average F	M Damage	%	11.9913
2	9.50	9.50	9.50	9.50		Std Devia	tion of PM D	Damage %	4.900919
3	9.30	9.30	9.30	9.30					
4	8.90	8.90	8.90	8.90	_	Debris Fil	ter 2 Std De	viations	21.79314
5	[,] 16.20	16.20	16.20) 16.20	Ĺ	Debris Fil	ter 3 Std De	viations	26.69406
6	12.20	12.20	12.20	12.20		Debris Fil	ter 4 Std De	viations	31.59498
7	10.50	10.50	10.50	10.50					
8	30.10	11.99	11.99	30.10		Lliotory	and of Ducks	Markaina	
9	12.00	12.00	12.00	12.00		Histogi	am of Probe	wark size	
10	13.30	13.30	13.30	13.30		8			
11	12.50	12.50	12.50	12.50	ër o		Rec	luce	Reduce
12	13.20	13.20	13.20	13.20	nbe	6	ove	rkill	escape
13	12.80	12.80	12.80	12.80	nur ads	4			
14	11.00	11.00	11.00	11.00	of	·	M		
15	9.10	9.10	9.10	9.10	nnt	2			
16	10.10	10.10	10.10	10.10	Co				
17	22.30	11.99	22.30	22.30		6 N			
18	9.90	9.90	9.90	9.90			~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	, ₁ , ₁ ,	J.5
19	8.40	8.40	8.40	8.40			Probe ma	ark area (%)	
20	9.50	9.50	9.50	9.50					
21	10.30	10.30	10.30	10.30					
22	9.80	9.80	9.80	9.80					

Parameters for Area Filter Test

Wafer size:	8-inch
Inspected die	713
Die size:	5897um x 6349um
Pads/die:	38
Max. area:	25%
Std. Devs:	1.1

Defect Map Without Area Filter

Defect Map With Area Filter

Pad Areas Before & After Filter

Before Filter: Pad #8 Fails Pad #9 Fails

Measurement	Die	Area %	Area um square
6	0	23.203909	1409.305542
7	0	21.484575	1314.597412
8	0	28.773952	1746.843262
9	0	25.316364	1537.989868

After Filter: Pad #8 Passes Pad #9 Fails

Measurement	Die	Area %	Area um square
6	0	23.203909	1409.305542
7	0	21.484575	1314.597412
8	0	21.993752	1746.843262
9	0	25.316364	1537.989868

Statistical Probe Mark Area Filter

Advantages

- Easy to use user only specifies filter threshold level
- Fast filter does not reduce machine throughput
- <u>Effective</u> debris which significantly increases the perceived probe damage area is automatically cleared
- <u>Automatically adjusts to variability of probing process</u>. A well controlled process will have a lower standard deviation, resulting in a tighter debris filter threshold

Disadvantages

- <u>Not effective for small debris</u> which does not significantly increase the probe damage area but does occlude the bond pad edge is not cleared and may cause false rejects
- <u>May cause escapes</u> if one probe needle creates a significantly larger damage area than other probe needles

Probe Mark Debris Filter – Edge Debris

Sample defect images

All three defects caught as probe position

Sample defect images cleared with edge debris filter algorithm

All three defects caught as probe position initially

Gradient analysis around the edge of the bond pad

Method 1 – No Debris Filters

Method 2 – With Edge Debris Filter

Inspection Results: 5x	Inspection Time:	4 minutes 30 secs	
	Total number of defects:	680	
	Approximate Review Time:	7 minutes	
Number of as probe po	279		
Number of as edge det	defects caught fects	401	

Manual Review of Defects

Edge Debris Filter

Advantages

- Fast filter does not reduce system throughput
- <u>Effective for small debris</u> debris which does not significantly increase the probe damage area, but does occlude the bond pad edge, is automatically cleared based on position variation
- Easy to setup specify the width of edge analysis

Disadvantages

 <u>Have not eliminated review</u> – while the amount of review has been significantly reduced, a fair amount of review is still required

Summary of Debris Filter Usage

Type of Debris Filter	Cantiliver Probing	Vertical Probing/ Microspring
Size	Applicable	Not an issue
Edge Debris	Applicable	Not an issue

Acknowledgements

This data was generated by the following August Technology personnel:

- Woo Young Han
- Max Guest
- Steve Frankeberger

4900 West 78th Street Bloomington, Minnesota 55435 Tel: (952) 820-0080

Rajiv.Roy@augusttech.com www.augusttech.com

Thank You