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Agenda

Why liquid thermal interface?
– Existing thermal problems at module test

– Thermal roadmap

– Predicted thermal problems at wafer test

Proposed  solution

Predicted benefit from lower resistance

Results of hardware development effort
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CHIP LEAKAGE HOTSPOTS 
(microprocessor logic cores)

Source [2]
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THERMAL RUNAWAY

Thermal runaway is a positive feedback phenomena in which 
leakage current and temperature interact in an exponential 
fashion with each other
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THERMAL RUNAWAY

•View of damaged chip from C4 
(solder ball) side

•Failure analysis photo

Source [2]
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Thermal Problems at Wafer Test

Sharply increasing power roadmap
– Predicts that module test problems will also be seen at 

wafer test
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Source [1]

Module Power Trends
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Leakage Current Roadmap
High Performance Microprocessor
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Anticipated Thermal Problems at Wafer Test

Problems from high power levels 
– Wafer damage

– Unknown wafer sort status due to incomplete test (over-
current shutdown)

– Incorrect speed sorting due to temperature rise and 
resulting speed shift

– Probe card damage
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Incomplete Wafer Testing

High leakage parts may exceed power supply 
capacity

These untested parts are passed on to module 
test

Increased number of defective parts causes 
higher packaging and test costs
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Thermal Problems at Wafer Test

Max allowable 

speed change

Power variations can cause a

temperature difference greater than 30 C

Incorrect Speed Sorting Due to 
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Probe Card Damage
High currents can damage probe cards
– Expensive to repair or replace

– Delay in shipping tested wafers (if cards in limited supply) 

[5]
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Solution

Thermal resistance improvement
– This provides three benefits:

• Reduces the temperature rise vs. power
• Reduces the die to die temperature variation (due to varying 

power levels)
• Reduces the effect of across the chuck resistance variation
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Speed sorting benefit from reduced thermal resistance
Larger power variation without sort error
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Assessing the Most Effective Approach to Reduce Thermal 
Resistance

First step is to quantify the contributors to thermal 
resistance
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Improving wafer to chuck dry contact

Theoretically, resistance could be improved by 
increasing chuck and wafer smoothness  and flatness

However, this resistance would be likely be sensitive 
to any particles or surface damage

Measurements showed that it wasn’t possible to 
match wafer and chuck contours

Backside polishing of 300 mm wafers gave only 5 to 
10% improvement and added processing cost 
(Data courtesy of David Audette, IBM)
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Thermal Resistance Options

Interface Gas
– Helium would give some improvement but not enough 

(approximately 20%)
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Thermal Resistance Benefit from Wet Interface

Main resistance is at interface of wafer to chuck

Fluid replaces air in microscopic gaps 

Note that the heat is not carried away by fluid flow; 
it is conducted through the fluid into the chuck

Thermal uniformity is less sensitive to surface 
finish or particles, since fluid fills any gaps. 
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Liquid Interface Chuck System

Goal : achieve the minimum thermal resistance and 
maximum thermal uniformity.
At least 600 W capability 
Approach must be consistent with the following guidelines
– Avoid radical change to the tool

• Avoid large development costs, and reduce lead time 
• Upgrade must be retrofittable to minimize the cost 

– Minimize additional processing cost 
– Dry or wet mode operation (same prober, with minimal 

transition time)
– 200 and 300 mm
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ConceptConcept
a) The wafer is pulled tightly onto the dry chuck by vacuum. 

b) Fluid is supplied under pressure on the supply side and pulled by 
vacuum at the recovery side. 

c) The fluid seeps between the supply and recovery sides via the
wafer / chuck interface.

Source: Tokyo Electron
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Fluid Under Glass Wafer (Prototype Chuck)

Note that the wafer is lifted up on the pins, at which point the fluid is normally

completely recovered. Source: Tokyo Electron



23 P, Diesing 6/4/05

Wet
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Current chuck
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Installed System

Circulator for liquid interface with TEL P12XLn and Teradyne J973
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Current Status

System meets all specifications 

– Reduces thermal resistance by 50% 

– Uniformity is better by 70 % 

– Maintains performance at 600 W or more

Liquid thermal interface system has been installed and has 
run engineering wafers

– Wet vs. dry operation is transparent to operators (part of 
product file)

– No wafer handling issues



27 P, Diesing 6/4/05

Predicted Benefit

This chuck will be an essential tool for
– Preventing thermal runaway

– Improving speed sorting accuracy

– Reducing probe card damage
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