

SIU Probe Burn Control Southwest Test Workshop

June 5th, 2005

Matt Claudius Intel Test Operation: Electrical Modeling Team

Background and Scope

- Probe types: "critical" and "redundant"
- Redundant probes have plenty of backups
- Critical probes are lonely but crucial
 - Example: device IO pads tied high or low (see schematic)
- This presentation just covers criticals

Matt Claudius

Probe Card Architecture

Simplified Sort Interface Unit (SIU)

Matt Claudius

What Causes Probes to Burn?

Some probes are made for low-current Low-current probes get themselves into high-current trouble Short locations Probe card surface

» Inside the die

The Short Event

∽Shorted probe current and Ohm's Law: V=IR

- →V = supply voltage
- →I = current flow through probe
- R = total path resistance (both power and ground paths)
- ${\ensuremath{\boxdot}}^{\sim} \mbox{Power-ground}$ loop resistance as low as 260 m Ω
- → A 3.3 V supply can force 12.7 A

Ohmmeter

The Solution: Theory

Core and critical probes—a single supply for conflicting applications

- Supply compensation at a loss
- A 100 amp clamp does little for a 1 amp probe

The Solution: Theory

Ormal sort, without a short

- →V = voltage drop
- →I = current through critical path during normal operation
- → R = resistance of critical probe's dedicated path
- ∽ Multiple probes behind the same circuit.
 - →Current per probe, R_{path} and V_{drop}

Example: 3 probes draw 50 mA each with a 2 Ω path

The Solution: Implementation

Inductance and capacitance slow things down

Critical probe protection circuit components...

Respective Effects of R, L and C

- Both plots show the same simulations on different time scales.
- 🗢 Input
 - →3 V
 - →100 ps rising edge
- This modeling is useful only to analyze trends.
- $rightarrow \alpha$: no protection circuit
- $\[\] \gamma$: ind—100 nH, 0.26 Ω only
- $rightarrow \delta$: res—1 Ω only

C ε: Full Circuit

Greek notation here used only for identifying each curve

Matt Claudius

June 5th, 2005

Respective Effects of R, L and C Capacitance → →After initial rise, capacitance pushes out the current edge in the usecond range ☆Inductance _____ → Pushes the initial edge out in the nanosecond range Resistance — Causes steady-state voltage drop Calculation currently unclear Protection through procrastination

Matt Claudius

June 5th, 2005

Page 11

Choosing the Right Resistance

- The right resistance stops burns without getting in the way.
- Lower is better, as long as it works.

Real World Problems

CIRCUITS

Hard to find a resistance window

Reckless resistance requires component swap

NOTE: Above animation is shameless and gratuitous. It implies nothing about the specific resistance of 2.6 Ω .

Current Application

Initial circuit development required best guesses

➢ITO-SIU's role

Research, standardize and proliferate

Strong success with an ambiguous source

Matt Claudius

June 5th, 2005

Page 14

Future Work

Research Wanted

→Sort floor validation

» Burn, protect, repeat

Accurate path resistance measurements

» Technology-specific precision protection

Supply current clamp response time

» Lock the barn door *while* the horse is escaping

Poly-Fuse technology

» Great technology, useless datasheets

Acknowledgements

⇒Rod Martens, Form Factor, Inc. →Probe current carrying capability ∽Jason McDaniel, Intel \rightarrow Sort practices, test methodology, supply current clamping Intel desktop chipset test division Original protection circuit design

Backup

Matt Claudius

June 5th, 2005

Page 17

Probe Current Carrying Capability

- The probes' ability to withstand high current was measured for two different scenarios:
 - →Realistic sort times
 - →Fast pulses
- All the measurements were completed in the lab environment with the setup shown below.

Probe Current Carrying Capability

- ☞ Realistic Sort Timing
 - → Pulses were 5 seconds long
 - →750 ms between pulses
 - \rightarrow 3, 10 and 30 pulse runs
 - Current increased 0.1 A between runs, then reproducibility was performed at anticipated max current for 15 more runs
 - → New probe used every run
 - → After reproducibility runs were completed, 1.7 A was determined to be max current

Experiment completed on Form Factor, Inc. 6.3.5 springs

- Fast Pulse
 - → Pulses were 17 ms long
 - →Only one pulse per run (i.e. no pulse train)
 - Current increased 0.1 A between runs, then reproducibility was performed at anticipated max current until failure was obvious
 - → New probe used every run
 - Initial runs implied capability up to 3.1 A (max current of lab supply), but reproducibility runs proved this untrue
 - No special case was made for fast pulses compared to normal sort