Integrated Fabless Manufacturing

“The” technical and business model for the future.

Michael Campbell
QUALCOMM CDMA Technologies
Business and Technology Trends

“The five "megatrends" that are shaping the industry are:

- Continued integration due to Moore’s Law,
- Increasing cost and scale of manufacturing facilities, $3B fabs and growing
- The role the consumer markets will have going forward,
- Service providers (Yield acceleration, PC RX, Pintail©, and etc)
- and (of course) a set of new and potentially disruptive technologies.

Market growth rate is slowing, costs within the industry are not.

- Continued integration leads to increasing complexity of devices
- Escalating design costs will force companies to amortize those costs across more end users
 - single customer chips are dinosaurs. Killer apps harder to find

“Fabs are getting bigger and more expensive,

- Chip makers will either get bigger through mergers as more IDM become fabless or share manufacturing facilities;
- Economies of operations will favor chip standardization leading to fewer chip manufacturers
 and more commoditization of silicon. (Gartner believes competition will prevail in any case,
 so that chip prices can remain low)

Meeting consumer demand is tough, unpredictable and driven by fads and fashions that require fast time to market
Rapid Growth of the Fabless Industry

Global semiconductor sales amounted to $237.1 billion in 2005, up 3.6 percent from $228.8 billion in 2004 –
Fabless = 17% of total and growing faster.

CAGR = 22%
Who is Qualcomm CDMA Technologies?

<table>
<thead>
<tr>
<th>Mkt Share</th>
<th>Rank</th>
<th>Leader</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFIC</td>
<td>20%</td>
<td>1</td>
<td>QCT</td>
</tr>
<tr>
<td>3G Handset</td>
<td>17%</td>
<td>2</td>
<td>Txn</td>
</tr>
<tr>
<td>Mobile phone</td>
<td>16%</td>
<td>2</td>
<td>Txn</td>
</tr>
<tr>
<td>Communication</td>
<td>6%</td>
<td>2</td>
<td>Txn</td>
</tr>
<tr>
<td>All IC markets</td>
<td>1.4%</td>
<td>14*</td>
<td>INTC</td>
</tr>
</tbody>
</table>

QCT Position:
- #1 in RFIC
- #2 in revenue for 3G phones
- #2 in revenue for mobile phones

* Excludes memory and foundry revenue
CDMA and WCDMA QUALCOMM MSM Shipments Accelerating
(Calendar Year, Millions)

*Sum of quarterly amounts do not equal total due to rounding.

**Guidance as of May 3, 2006
Leading WCDMA with Cost Effectiveness and Advanced Technology

First Commercial HSDPA Devices

- ZTE MF330
 - 1st MSM6280
- Sierra Wireless
 - AirCard 860
- Option Wireless
 - Globe Trotter
- Novatel
 - Merlin U740
- Samsung Z560
 - 16mm thin
- LGE CU320
 - HEDGE Cingular
- Samsung ZX20
 - HEDGE1.8 Cingular

First HSDPA for Europe

First HSDPA in US

Feature-Rich Devices

- Toshiba V903T
 - AGPS
- Samsung Z150
 - 9.8 mm thin
- Huawei U636
 - Entry Level
- LGE U900
 - UMTS + DVB-H
- ZTE F608
 - Low Cost Leader
- Sanyo SA800i
 - AGPS Kid Phone

36 New Handsets Launched in March and April
QUALCOMM Execution Continues to Generate Strong Results

Semi-Annual MSM Shipments
(Millions)

Three consecutive quarters of record MSM shipments

Semi-Annual QCT Revenue Trend
(Millions)

Two consecutive quarters of $1B+ revenue
Who is Qualcomm CDMA Technologies?

Leader in the CDMA / WCDMA / UMTS wireless and in the fabless manufacturing worlds.

We are an “Integrated Fabless Manufacturer”

Partnering with EDA, Foundries and Assembly / Test companies to drive Process-Design Integration and a product delivery system fueled by each partner’s expertise and that delivers value to all partners,

Including the end customer.

2005 Shipped our 2nd billionth chip

57,000 every hour and

Accelerating
What is the
The Integrated Fabless Manufacturing Model….

• Delivering Leading Edge Products in a Dynamic Environment

• Partnership

• Focus on technology leadership in end user markets
 – Maximum flexibility
 – Effective use of capital for design R&D

• Collaboration supply-chain partners
 – Designers, EDA, Foundries, IP and Assembly / test subcontractors

Supports standards to help the inclusion of third-party IP into the semiconductor supply chain
 – IP protection

• Enables all parties to focus on and invest in core strengths
Integrated Fabless Manufacturing – A Collaborative Effort

- Selecting, Evaluating, Qualifying, & Managing EDA, Foundries, and SATS is a collaborative effort
 - **QCT** owns the design and implementation
 - Catalyst for change and cooperation
 - **EDA** companies provide the tools for leveraged success
 - **Foundries** develop the process
 - Provide capacity and quality
 - **SATS** - Assembly and Test - vehicle for customer delivery
 - Assembly – packaging growing in complexity
 - Test – leverages industry platforms for low cost and high quality

For Success we all must work together
Collaboration in the supply chain

- Design Creation
 - Tools
 - GDS/MEBES
 - EDA Tool Providers
 - IP Providers
 - Cores
 - Cells

- Silicon Manufacture
 - Rules
 - Wafer
 - Die
 - Parts
 - Silicone Probe

- Silicon Assembly
 - Silicon Package Test

- Library

Shipping
Leveraging our supply chain:

At Qualcomm the Integrated Fabless Manufacturing business model drives excellence in supply chain management:

- Digital foundries – 5
- IP providers – 5+
- Analog foundries – 4
- RF foundries – 5
- Assembly suppliers – 3
- Test providers - 7
- ATE platforms - 3
- EDA companies – 15+
- Fabs – USA, Taiwan, Korea, China, Singapore
- Assembly – Korea, Philippines, Singapore, Taiwan, China, Malaysia

Die sizes-
1x2 to 22x 21
Lets talk about test
Test helps enhance value in the chain

Test and Business decisions affect and reinforce each other leading to positive convergence

- Business Goals/Financial Constraints
- Process Technology and capital investment strategy
- Shipped Product Quality/Customer Returns
- Yield Optimization and Management
- Test Methodology, ATE Strategy
Maximizing Value of Test

Disaggregation enables specialization and reduced cost...

…but makes it difficult to realize full potential of Test / DFY solutions

Regain value lost from disaggregation through optimal business interactions

Vertically Integrated Companies

Foundry
Packaging
Semiconductor
System
ATE
EDA
IP
Equipment
Universities

Courtesy of Cadence - Sanjiv Taneja
Business and Test

• The test business validates product functionality and separates the good from the bad.
 – Cost efficiency demands early identification and removal of discrepant material.
 – Each step increases the cost of failure and the risk that the product will not go to market on time.
 – The cost of “test” has continued to grow with increasing product complexity
 – Customer requirements drive the test process to execute on rigorous / exhaustive test plans.

• Change is needed for success.

• Time to market and test cost must be reduced.
Test and Business

• Solutions from system models to silicon test must be automated.
 – Structural test has an almost direct link from the EDA tools to test and yield
 – Linkage must be driven into the fab’s automated defect detection systems.
 – Data sets optimized for statistical process / decision making

• Functional test have a poor correlation path to the ATE
 – Improve modeling capabilities to achieve the reliability and predictability.

• Advancements have been made; however, for full optimization of test cost:
 – EDA tools and ATE correlation must come together to reduce time to market and cost.
Recent headlines say it loud and clear. Test is just not test anymore.

- **EDA conversion tools integrated with ATE software**
- **How much test compression is enough?**
- **Low-power IC test can be trying**
- **Tackling test challenges for low-power design**
- **Test takes new role in yield improvement**
Issues in the Real world

- Bit cell failures continue to dominate – need effective redundant memory scheme, ECC, and test strategy.

- Iddq control more difficult with DSM geometry. Delta Iddq, group Iddq, and “intelligent test” are paths forward.

- Broken Scan Chains – ATPG failures. Easy to find

- “Defective Scan Chains” - Voltage Sensitive Hold-Time Violations – Bridges – Route Defects Dominate

- Test Escapes – Customer Returns – continue – Mostly Timing reported, or lack of coverage (structural or functional)

- Temperature Sensitive Delay-Faults (Vias) have been found and presented in multiple journals

- More Process Monitors (R.O.s, Delay Lines, Canary Circuits) in use

- Systematic Design-based faults/defects present like random fail signatures
Business Realities
Yield and Business Realities

• Return on the (design & development) investment comes when there is volume

• Accelerated yield learning
 a) Decreases the investment and Shortens the investment period
 b) Increases and Prolongs the return period

• Product life, and ASP, are driven by market conditions

• Yield Learning Goes Straight to the Bottom Line
 – Anything that can be done to improve yield and yield learning is good for the business
Yield - Yesterday & Today

Historically
Particulate LVS-DRC Rules Process Flow

Particulate driven Yield-Loss

Design-related Yield-Loss

- DSM Defects dominated by “Dirt” and “Process Machines”
- Defects dominated by “Design marginality” and “Process Variation”
- Careful planning with DFM, DFT, and statistical design models now key for success

Today
Layout Tools Process Rules Mask Rules Std Cells/IP Cores Layout Structures

Parametric Measurements are more effective for DFM-driven loss

Almost all of the new Yield-Loss issues can be related back to Systematic Design-based loss mechanisms & drivers

The Stuck-At Test Fault Model is less effective for DFM-driven loss
Modern Test is...

Time to Success

Structural Test vs Functional Test

- **Structural Test**
 - Higher Fault Coverage in Less Time with Less System Knowledge at a Lower Cost
 - Tools to create test logic and vectors
 - Methods to add Scan, LBIST, MBIST, Iddq logic
 - Deterministic Vectors for Stuck, Delay, Bridging, Leakage, Memory, etc.

- **Functional Test**
 - Optimized for Scan, AC Scan, BIST, MBIST, Iddq, etc.
 - Optimized for AC testing, complex Design validation, characterization, "at speed" testing
 - More Expensive

- **Graph**
 - Time to Success comparison between Structural Test and Functional Test
 - Y-axis: Percentage Success
 - X-axis: Days
 - Key:
 - DFT @Nom
 - DFT @Nom w V+/-
 - DFT @speed w+/-V and T
 - Functional @nom
 - Functional @Nom w V+/-
 - Functional @speed w+/-V and T

- **Legend**
 - Day 0%
 - Day 10%
 - Day 20%
 - Day 30%
 - Day 40%
 - Day 50%
 - Day 60%
 - Day 70%
 - Day 80%
 - Day 90%
 - Day 100%

- **Graph Data**
 - DFT @Nom: Immediate success
 - Functional @nom: Gradual increase in success over days
New commercial test technologies- leveraging DFT in designs are available from Verigy (Agilent), Teradyne, Inovys, and Advantest.

The optimized systems improve ability to leverage structural test, offer higher level diagnostics and lower the overall cost of test.

Accelerate Yield - Leveraged diagnostics from wafer probe can help accelerate yield by weeks or months.

- Leveraging wafer probe data back to KLA data --- Months or Quarters.
- Value = volume * savings * time
Making Sense of it All

The task is to put the proper class of fails into the proper analysis group – not to put the wrong type of failure into the wrong analysis group.

Fail Log Full of Various Fail Reports

Initial screening
- Analyze Test Environment
- ATE/TProg Loadboard V/C/T/Frq

Detailed Screening
- Analyze Test Logic
- Broken Scan MBIST

Comparison Analysis
- Analyze Sample Logic
- Broken Logic/Routes Memory

Design Bug/Error
Manufacturing
Driving yield with wafer level bit map sharing

Memory failures and ATPG failures

Wafer map showing locations of all memory failures / ATPG – color coded by type

Fail Count per type
Comparing Wafer Level Bitmaps to KLA Results

CP bit map

Inline defect map

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

u_scratch
Pre-layer particle
Surface PA
Yield Leaning and Tool development

- Test, Debug & FA Infrastructure
 - Excellent skill mix, people & tools
 - Structured procedures
 - Accelerated feedback
 - Start low volume early to learn yield

- Partnering Relationship
 - Very tight coupling with foundries
 - Aggressive goals
 - Accelerated learning cycles and corrective action

- Good Design
 - Extensive use of DFM Guidelines
 - Internal tools and utilities
 - Conservative Lay Out practices

It Worked for us So Far
THE END GAME

• The **TEST** business must help drive ON TIME, high quality, cost effective products to the markets:
 – We have the tools, the testers and the knowledge to do so.

• We must drive yield so that we deliver additional free cash is the system is the solution.

• Results:
 – Industry innovation accelerated. Competition based on Quality and time to market
 – More designs willing in the market drives more silicon in Fabs – everybody wins.
 – More business for us…